• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响

李永双 范周周 国辉 周金星 彭霞薇

李永双, 范周周, 国辉, 周金星, 彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6): 854-862. doi: 10.11932/karst20200606
引用本文: 李永双, 范周周, 国辉, 周金星, 彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响[J]. 中国岩溶, 2020, 39(6): 854-862. doi: 10.11932/karst20200606
LI Yongshuang, FAN Zhouzhou, GUO Hui, ZHOU Jinxing, PENG Xiawei. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution[J]. CARSOLOGICA SINICA, 2020, 39(6): 854-862. doi: 10.11932/karst20200606
Citation: LI Yongshuang, FAN Zhouzhou, GUO Hui, ZHOU Jinxing, PENG Xiawei. Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution[J]. CARSOLOGICA SINICA, 2020, 39(6): 854-862. doi: 10.11932/karst20200606

菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响

doi: 10.11932/karst20200606
基金项目: 国家自然科学基金项目(31971729);国家重点研发计划项目(2017YFC0505500、2017YFC0505504)

Effects of microorganisms agent addition on soil microbes in different rhizosphere soils and calcium carbonate dissolution

  • 摘要: 本实验通过对云南省建水地区植被根际土壤中高产碳酸酐酶(CA)的微生物进行分离筛选和溶蚀效应的测定,将溶蚀效果较好的菌株制成菌悬液进行盆栽实验,探究该菌株对不同树种根际土壤微生物代谢活性和碳酸钙类岩石溶蚀效应的影响。结果表明:从根际土壤中筛选到一株能够高产CA,且具有较强溶蚀效果的沙雷氏菌,施加该菌剂的处理组显著增加了土壤微生物数量,提高微生物的代谢活性和多样性,并加速碳酸钙类岩石的溶蚀。本研究旨在为今后岩溶区生态恢复过程中植物树种的选择与微生物菌剂的联合应用提供一种技术手段,为岩溶地区生态系统的治理提供一定的理论支持。

     

  • [1] 韩路, 王海珍, 于军. 塔里木河上游不同植被类型土壤水文特性研究[J]. 水土保持学报, 2013,27(6):124-129.
    [2] 中国科学院. 关于推进西南岩溶地区石漠化综合治理的若干建议[J]. 中国科学院院刊, 2003,18(3):489-492.
    [3] 熊平生, 袁道先, 谢世友. 我国南方岩溶山区石漠化基本问题研究进展[J]. 中国岩溶, 2010,29(4):355-362.
    [4] Tripp B C, Smith K, Ferry J G. Carbonic anhydrase: new insights for an ancient enzyme[J]. Journal of Biological Chemistry, 2001,276(52):48615-48618.
    [5] Xie R, Xu W, Bao W, et al. Establishing a protein expression profile database for the normal human pituitary gland using two-dimensional high-performance liquid chromatography combined with LTQ-Orbitrap mass spectrometry[J]. Neural Regeneration Research, 2012,7(36):2922-2928.
    [6] Shen T, Li W, Pan W, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017,123:66-74.
    [7] 申泰铭, 邢必果, 李为, 等. 不同种类微生物及其碳酸酐酶对CO2-H2O-碳酸盐系统中碳酸盐岩的溶蚀作用[J]. 矿物岩石地球化学通报, 2014,33(6):797-800.
    [8] 范周周, 卢舒瑜, 李志茹, 等. 岩溶与非岩溶地区不同林分根际土壤微生物对碳酸盐岩的溶蚀作用[J]. 应用与环境生物学报, 2018,24(4):751-757.
    [9] 沈萍, 范秀荣, 李广武. 微生物学实验[M]. 北京:高等教育出版社, 1999:69-82.
    [10] 邓洁, 李建宏, 管章玲, 等. 一株产碳酸酐酶附生菌对铜绿微囊藻(Microcystis aeruginosa)生长的影响[J]. 湖泊科学, 2012,24(3):429-435.
    [11] 刘娜, 赵琳娜, 张伟, 等. 16S rRNA基因序列、生化鉴定、质谱3类方法鉴定常见微生物的结果分析[J]. 食品安全质量检测学报, 2019,10(1):68-72.
    [12] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.
    [13] 李恩香, 蒋忠诚, 曹建华, 等. 广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J]. 生态学报, 2003,24(6):1131-1139.
    [14] Vicente, Cláudia S L, Nascimento F X, et al. Evidence for an opportunistic and endophytic lifestyle of the bursaphelenchus xylophilus-associated bacteria serratia marcescens PWN146 isolated from wilting pinus pinaster[J]. Microbial Ecology, 2016,72(3):669-681.
    [15] 田雅楠, 王红旗. Biolog法在环境微生物功能多样性研究中的应用[J]. 环境科学与技术, 2011,34(3):50-57.
    [16] 靳长青, 李国旗, 赵盼盼, 等. 围封对苦豆子群落多样性及土壤微生物的影响[J]. 北方园艺, 2019(2):118-124.
    [17] 陈正培, 熊建文, 沈方科, 等. Biolog-ECO技术及其应用研究进展[J]. 轻工科技, 2018,34(6):97-98,156.
    [18] 杨海君, 肖启明, 刘安元. 土壤微生物多样性及其作用研究进展[J]. 南华大学学报, 2005,19(4):21-26,31.
    [19] Nayyar A, Hamel C, Lafond G, et al. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology, 2009,43(1):115-121.
    [20] Mai K, Biswas B, Smith E, et al. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils[J]. Ecotoxicology & Environmental Safety, 2018,156:434-442.
    [21] 范周周, 卢舒瑜, 王娇, 等. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性[J]. 北京林业大学学报, 2018,40(7):55-61.
    [22] Duncan S H, Louis P, Thomson J M, et al. The role of pH in determining the species composition of the human colonic microbiota[J]. Environmental Microbiology, 2009,11(8):2112-2122.
    [23] 张变华, 靳东升, 郜春花, 等. 不同方法分析工矿复垦区不同植物根际微生物多样性的比较[J]. 江苏农业科学, 2019,47(4):223-226.
    [24] 高晓奇, 肖能文, 叶瑶, 等. 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2014,20(5):913-918.
    [25] 王晓丽, 曹子林, 和润喜, 等. 不同pH、温度和储藏因素对云南松针叶碳酸酐酶稳定性的影响[J]. 云南大学学报, 2016,38(3):501-506.
    [26] 王晓丽, 曹子林, 和润喜, 等. 云南松根叶及林内土壤的碳酸酐酶活性分析[J]. 西南林业大学学报, 2016,36(2):31-34.
    [27] Saleem M, Fetzer I, Harms H, et al. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal[J]. Proceedings of the Royal Society B: Biological Sciences, DOI:10.1098/rspb.2015.2724.
    [28] 王艳红, 于镇华, 李彦生, 等. 植物-土壤-微生物间碳流对大气CO2浓度升高的响应[J]. 土壤与作物, 2018,7(1):22-30.
    [29] Wang C, Li W, Shen T, et al. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313: 17-24.
  • 加载中
计量
  • 文章访问数:  1487
  • HTML浏览量:  595
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 发布日期:  2020-12-25

目录

    /

    返回文章
    返回