Occurrence forms of inorganic phosphorus in soils of karst wetland under different landuses and comparison of two analysis methods
-
摘要: 本研究利用SMT法和七步连续提取法对桂林市会仙岩溶湿地中典型土地利用方式(水稻田、果园、荒地)的土壤以及河流底泥中磷的赋存形态进行研究。结果表明:岩溶土壤总磷含量大小为底泥>果园>水稻田>荒地;底泥中Ex-P和Fe-P所占比例较大;荒地土壤中Or-P和Res-P为主要磷形态;水稻田和果园土壤中Fe-P所占比例较高。人为干扰明显的果园表层土壤有较大的磷淋溶风险;荒地土壤中磷的生物可利用性低,体现了其缓冲固持湿地水体中磷的生态功能。大量可溶性磷经淋溶迁移富集于底泥中,是河流富营养化的风险源。七步法表现出在提取多种复杂结合态磷上的优势,对岩溶土壤中Ca-P的提取更充分有效,更适用于研究岩溶土壤不同形态的磷分布特征。Abstract: The content and speciation of phosphorus(P)determine soil fertility and the risk of P leaching from soils. This work uses standard, measurement and testing(SMT)and seven-step sequential extraction methods(“seven-step method”)to investigate the occurrence of inorganic P(In-P)in typical karst soils(paddy land,orchard,barren land)and river sediment in the Huixian karst wetland of Guilin, to analyze the effects of different land utilization on the distribution of In-P in karst soils and compares the two methods on this issue. The results show that total P content in the karst wetland soils from high to low is river sediment,orchard,paddy land,and barren land. This value is the highest in the river sediment(416.97 mg?kg-1 ),in which highly bioavailable exchangeable P(Ex-P)and iron P(Fe-P)are dominant. In the barren land soil,organic P(Or-P)and residual P(Res-P) are the major forms;while In-P content(64.45 and 47.56 mg?kg-1 for 0-20 cm and 20-40 cm depth)is the lowest in all four soils. The autologous P(Au-P),which has low bioavailability,has the highest proportion in In-P of this soil compared to that in other soils. In comparison,the surface soil of the paddy land and orchard has relatively high In-P content(276.04 and 418.19 mg?kg-1, respectively)in which Fe-P is the dominant form. In this analysis, the seven-step method has advantages in the extraction of P with complex binding states. Specifically for the karst soils,which are characterized by high Ca content and alkalinity,the seven-step method is more effective in the extraction of Ca-P. The In-P constitutes a great share in the total P in karst soils, therefore the P pool is more active. Human disturbance greatly increases the In-P content and its bioavailability. Especially,the surface orchard soil has a great potential risk of P leaching. The barren soil has low In-P content and bioavailability,indicating its high P buffering capacity. The enrichment of P in sediment via leaching suggests the sediment is a risk source for river eutrophication. In general,the seven-step method is a more suitable approach for P speciation analysis in karst soils.
-
[1] 戴照福,王继增,程炯.土壤磷素非点源污染及其对环境影响的研究[J]. 农业环境科学学报, 2006,25(S1): 323-327. [2] 杨维荣.环境化学[M]. 北京: 人民出版社. 1980. [3] 柳健生.九江甘棠湖底泥磷释放研究[J]. 环境科学与技术, 1988,40(1): 12-14,36. [4] 李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J]. 海洋环境科学, 1998,17(1): 16-21. [5] 金相灿,屠清瑛.湖泊富营养化调查规范(2版)[M]. 北京: 中国环境科学出版社, 1990: 226-229. [6] 李洁,张文强,金鑫,等.环渤海滨海湿地土壤磷形态特征研究[J]. 环境科学学报, 2015, 35(4): 1143-1151. [7] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations [J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. [8] 杨斌,王婷,王坤,等.一种改进的磷形态连续提取方法[J]. 环境科学与技术, 2017, 40(9): 90-97. [9] 金相灿,姜霞,姚扬,等.溶解氧对水质变化和沉积物吸磷过程的影响[J]. 环境科学研究, 2004,17(S1): 34-39 [10] Friedl G, Wuest A. Disrupting biogeochemical cycles:-consequences of damming[J].Aquatic Sciences,2002, 64(1):55-65. [11] 贾陈忠,秦巧燕,李克华,等.荆州市地表水沉积物中磷的形态分析[J]. 环境科学与管理, 2008, 33(1):46-48,52. [12] Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-Volvi and Koronia N.Greece[J]. Chemosphere, 2002, 46(8): 1147-1155. [13] 扈传昱,潘建明,刘小涯.珠江口沉积物中磷的赋存形态[J]. 海洋环境科学, 2001, 20(4): 21-25. [14] 沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J]. 土壤学报, 1992(1): 80-86. [15] 王艳玲,杨有德,赵兰坡.黑土无机磷组分对有效磷的影响[J]. 吉林农业大学学报, 2005,27(2): 197-201. [16] 张林,吴宁,吴彦,等.土壤磷素形态及其分级方法研究进展[J]. 应用生态学报, 2009,20(7): 1775-1782. [17] 邵亚,蔡崇法,赵悦,等.桂林会仙湿地沉积物中磷形态及分布特征[J]. 环境工程学报, 2014, 8(12): 5311-5317. [18] 徐广平,何成新,张德楠,等.桂西南岩溶山地不同土地利用方式土壤微生物量及其活性特征[J]. 广西植物, 2013, 33(3): 331-337. [19] Ruban V, Brigault S, Demare D,et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-les-Orgues Reservoir, France[J]. Journal of Environmental Monitoring, 1999, 1(4): 403-407. [20] 朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究[J].农业环境科学学报, 2003,22(3): 349-352. [21] 蔡德所,马祖陆,赵湘桂,等.桂林会仙岩溶湿地近40年演变的遥感监测[J]. 广西师范大学学报(自然科学版), 2009, 27(2): 111-117. [22] 吴应科,莫源富,邹胜章.桂林会仙岩溶湿地的生态问题及其保护对策[J]. 中国岩溶, 2006,25(1): 85-88. [23] 邓小军,陈晓龙,唐健,等. 基于Nemerow 法的森林土壤肥力综合指数评价[J]. 草业学报, 2016, 25(7): 34-41. [24] 方晰,陈金磊,王留芳,等.亚热带森林土壤磷有效性及其影响因素的研究进展[J].中南林业科技大学学报,2018,38(12):1-12. [25] 徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,25(11):147-149. [26] 许春雪,袁建,王亚平,等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J].岩矿测试, 2011, 30(6): 785-794. [27] 章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征[J]. 农业环境科学学报, 2007,26(4): 1207-1213. [28] 肖文娟,曹秀云,宋春雷,等.太湖不同营养类型湖区沉积物磷的形态与吸附行为的比较[J]. 环境工程学报, 2015, 9(7): 3525-3530. [29] 凌虹,巫丹,谭东烜,等. 近年太湖总磷升高成因及对策建议[J]. 环境科技, 2018, 31(6): 54-59. [30] 鲁如坤.土壤磷素水平和水体环境保护[J]. 磷肥与复肥, 2003,18(1): 4-8. [31] 赵靓,侯振安,柴颖,等. 长期施磷对灰漠土无机磷形态的影响[J]. 水土保持学报, 2014, 28(3): 236-242. [32] 陆文龙,曹一平,张福锁.低分子量有机酸对土壤无机磷形态转化的影响[J]. 华北农学报, 1999,14(2): 84-89. [33] 焦树仁.沙地人工林凋落物、腐殖质及微生物的研究[J]. 东北林业大学学报, 1989, 17(4): 10-17. [34] 刘玉萍,陈西,王延华,等. 滇池流域土壤养分分布及其对水体富营养化的影响[J]. 南京师大学报(自然科学版), 2017, 40(4): 129-136. [35] 毛战坡,尹澄清,单保庆,等.农业非点源污染物在水塘景观系统中的空间变异性研究[J].水利学报,2006,37(6):727-733,739. [36] 王雨春,马梅,万国江,等. 贵州红枫湖沉积物磷赋存形态及沉积历史[J]. 湖泊科学, 2004, 16(1): 21-27. [37] 周来,冯启言,王华,等.南四湖表层底泥磷的化学形态及其释放规律[J]. 环境科学与技术, 2007,30(6): 37-39,117.
点击查看大图
计量
- 文章访问数: 1478
- HTML浏览量: 562
- PDF下载量: 237
- 被引次数: 0