Effects of different land use types on soil anti-erodibility in Chongqing karst depression and karst-hill peak areas
-
摘要: 以重庆鸡公山耕地、果园、撂荒地、灌草坡和林地5种土地利用类型为研究对象,通过野外采样调查与室内分析,采用主成分分析法对与土壤抗蚀性密切相关的11个常用指标进行筛选和综合评价,探讨不同土地利用类型下土壤抗蚀性能的变化状况和差异性。结果表明:研究区表征土壤抗侵蚀能力最优指标为:>0.25 mm团聚体破坏率、>0.25 mm水稳性团聚体含量、团聚度、<0.01 mm物理性黏粒含量、结构性颗粒指数和<0.001 mm黏粒含量。依据提炼出的3个主成分,建立土壤抗蚀性综合评价模型,即Y(综合指数)=0.712Y1+0.157Y2+0.131Y3,由此计算出土壤抗蚀性由强到弱为:林地> 灌草坡>撂荒地>果园>耕地。建议区内适当退耕还林还草,减少人为扰动,以利于提高土壤的抗蚀性能和水土保持能力。Abstract: The karst area in southwest China is the largest one,which is mainly located in Yunnan Province, Guizhou Province and Sichuan Province. Beibei district of Chongqing belongs to subtropical monsoon humid climate,and is controlled by the brush fold of Huayin mountain.Its geological structure is the parallel ridge valley landform of "one hill three ridge two valley",which is composed of karst depression-hills in eastern Sichuan.The carbonate rocks are mainly Triassic Jialingjiang formation (T1j), Feixianguan formation (T1f) and the Permian Maokou formation (P2m). The developed soil is yellow and brown calcareous soil. Under the influence of geology and climate, the soil is seriously eroded by chemical dissolution, gravitational and fluvial erosion.In order to explore the changes and differences of soil anti-erodibility under different land use types,and provide scientific basis for soil erosion control and ecological reconstruction in karst area of Chongqing. The topsoils of 5 land use types,including cultivated land, abandoned land, shrub-grass slope land, forest land and orchard,were selected in depression-hill peak area of Jigong karst mountain in Chongqing.Through the combination of field survey and lab analysis,11 common closely indexes related soil anti-erodibility were screened and comprehensive evaluated using the principal component analysis method.The results show that: the soil in the study area belongs to clayey to loamy soil, and the most easily eroded particles ranged from 0.05 to 0.25 mm. The optimal indexes on behalf of soil anti-erodibility are >0.25 mm aggregate destruction rate, >0.25 mm water stable aggregate content, degree of aggregation, <0.01 mm physical clay content, structural particle index and <0.001 mm clay content. That is, the lower the aggregate destruction rate >0.25 mm, the higher the content of water stable aggregates content of >0.25 mm, the degree of aggregation, the physical clay content <0.01 mm, the structural particle index and the clay content of <0.001 mm, the stronger the anti-erodibility of karst soil. According to the synthetic index analysis, 3 principal components are extracted and the comprehensive evaluation model of soil anti-erodibility was established.The order of evaluation of soil anti-erodibility was, forest land > shrub-grass slope land >abandoned land> orchard> cultivated land. It is suggested that appropriate returning cultivated land to forest or grassland in the karst area will help to reduce water and soil loss, and reasonably human activities can improve soil anti-erodibility and capacity of water and soil conservation.
-
Key words:
- karst area /
- land use types /
- soil anti-erodibility /
- principal
-
[1] 沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348. [2] 李阳兵,侯建筠,谢德体.中国西南岩溶生态研究进展[J].地理科学,2002,22(3): 365-371. [3] 李程程,曾全超,贾培龙,等.黄土高原土壤团聚体稳定性及抗蚀性能力经度变化特征[J].生态学报,2020,40(6):2039-2048. [4] 郭建英,李锦荣,刘铁军,等.退耕还林工程建设对吴起县土地利用/覆被变化及其土壤侵蚀的影响[J].水土保持研究,2013, 20(5):1-6. [5] 李阳兵,王世杰,谭秋,等.喀斯特石漠化的研究现状与存在的问题[J].地球与环境,2006,34(3):9-14. [6] 陈洪松,冯腾,李成志,等.西南喀斯特地区土壤侵蚀特征研究现状与展望[J].水土保持学报,2018,32(1):10-16. [7] 杨玉梅.不同土地利用方式下土壤抗蚀与抗冲性研究[D].成都: 四川农业大学,2010:4. [8] 王佩将,戴全厚,丁贵杰,等.退化喀斯特植被恢复过程中的土壤抗蚀性变化[J].土壤学报, 2014,51(4):806-815. [9] 肖盛杨,舒英格,陈梦军.喀斯特高原峡谷区不同植被类型的土壤抗蚀性[J].水土保持通报,2019,39(4):25-31. [10] 张华渝,王克勤,宋娅丽,等.滇中尖山河流域不同土地利用类型土壤抗蚀性[J].水土保持学报,2019,33(5):50-57. [11] 中国科学院地质研究所岩溶研究组著.中国岩溶研究[M].北京:科学出版社,1979. [12] 李月臣,杨华.重庆市石漠化灾害特征及防治分区研究[J].中国地质灾害与防治学报,2008,19(2):134-137. [13] 姜培坤,俞益武,徐秋芳.商品林地土壤物理性质演变与抗蚀性能的评价[J].水土保持学报,2002,16(1):112-115. [14] 杨剑虹,王成林,代亨林.土壤农化分析与环境监测[M].北京:中国大地出版社,2008. [15] 白秀梅,韩有志,郭汉清.关帝山不同植被恢复类型土壤抗蚀性研究[J].水土保持学报, 2014,28(2):79-84. [16] 希勒尔 D .土壤物理学概论[M].尉庆丰,荆家海,王益权,等,译.西安:陕西人民教育出版社,1988 . [17] 赵辉,陈国玉,解明曙,等. 湖南武水流域不同土地利用类型土壤结构分形特征研究[J].土壤通报,2009,40(5):993-997. [18] 林昌虎. 砂页岩山地土壤粒级侵蚀规律的研究[J].水土保持学报,1993,7(1):1-10. [19] 袁俊吉,蒋先军,胡宇,等.不同植被覆盖对养分在土壤水稳性团聚体中分布特征的影响[J].水土保持学报,2009, 23(6):112-122. [20] 张果.我国可持续发展与水土流失治理[J].四川师范大学学报(自然科学版),1997,20(4):140-144. [21] PUGET P, ANGERS D A, CHENU C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils [J]. Soil Biology & Biochemistry,1998,31(1):55-63. [22] 张信宝,王世杰,曹建华,等. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题[J].中国岩溶,2010,29(3):274-279. [23] Mallick J,Alwadi H,Rahman A,et al.Spatial variability of soil erodibility and its correlation with soil properties in semi-arid mountainous watershed,Saudi Arabia[J].Geocarto International,2015,31(6):661-681 [24] 刘世梁,傅伯杰,吕一河,等.坡面土地利用方式与景观位置对土壤质量的影响[J].生态学报,2003,23(3):414-419.
点击查看大图
计量
- 文章访问数: 1581
- HTML浏览量: 646
- PDF下载量: 255
- 被引次数: 0