Chemical characteristics and circulation process of geothermal water beneath Longchuan basin, western Yunnan
-
摘要: 通过对陇川盆地开展地热地质调查,查清其地热资源分布:盆地内共出露地热点11处,热储结构类型为带状型和层状型,盆地中部为层状型,两侧盆地边缘为带状型,其中北西部受断裂控制明显,南东部受节理裂隙控制明显。其储热层为变质岩及新近系芒棒组的花岗质砂砾岩、细砂岩;地热水受大气降水影响明显,循环深度都在1 600 m以上,大部分在1 800~2 400 m之间,主要来源于深部热源,通过断裂、裂隙及砂砾石孔隙作为导水、储水上涌通道,接收来自山区补给的地下水混合出露于地表,补给距离在1.5 km以上,如南宛河温泉温度最高,地下水循环深度最深,补给距离最远,达10 km;盆地北东和西部水温高,循环深度深。Abstract: A survey of geothermic geology has been conducted to clarify the distribution of geothermal resources beneath the Longchuan basin. Results show that geothermal sources are exposed at 11 sites in this basin, in which heat reservoirs are zonal and layered type structures. Of them, the layered type appears in the central part of the basin, and the edges of each side of the basin are of zonal type. In the northwest of the basin, the heat reservoirs are obviously controlled by faults, while in the southeast joints and cracks have profound influence on the geothermal sources. The host rocks of these thermal reservoirs include metamorphic rocks, granitic glutenite and fine sandstone of Neogene Manban formation. Hydrochemical analysis suggests that geothermal water is obviously affected by atmospheric precipitation, and its circulation depth is above 1,600 m, mostly between 1,800 and 2,400 m, mainly from the surrounding mountains, with recharge distance over 1.5 km. The Nanwanhe hot spring has the highest temperature and the deepest groundwater circulation, with the longest recharge distance up to 10 km. Overall the water temperature is relatively high and water circulation is deep in the northeast and west of the basin. The heat of the geothermal water comes from the deep thermal source. It is a mixed type of geothermal water that receives groundwater recharge from mountainous areas and surface water through faults, fissures and sand and gravel pores as upwelling channels for water diversion and storage.
-
[1] 尹玉龙.中国地热资源及其潜力评估[J].科技与创新,2018(5):57-58. [2] 洪乃静,张晓霞.关于地热资源勘查及评价方法的讨论[J].地热能,2006(2):20-24. [3] 王贵玲,张薇,梁继运,等.中国地热资源潜力评价[J].地球学报,2017,38(4):449-459. [4] 张华,何绕生,杨颖彬,等.云南省盈江至陇川高温热水带地热资源专项调查报告[R].昆明:云南省地质环境监测院,2019. [5] 汪缉安,徐青,张文仁.云南大地热流及地热地质问题[J].地震地质,1990,12(4):367-377. [6] 黄小龙,吴中海,赵小艳,等.2014年5月云南盈江MS5.6、MS6.1地震发震构造分析[J].地球学报,2015,36(6):761-770. [7] 安晓文,常祖峰,陈宇军.等.云南第四纪活动断裂暨云南第四纪活动断裂分布图[M].北京:地质出版社,2018. [8] 王朝栋.大地电磁测深在陇川盆地石油勘探中的应用效果[J].云南地质,1993,12(2):209-218. [9] 陈布科,赵永胜,邝平河,等.滇西陇川盆地形成机制[J].石油与天然气地质,1994,15(4):308-315. [10] 吴中海,李贵书,毛晓长,等.泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题[M].北京:地质出版社,2013. [11] 孙泽轩.滇西新生代盆地与砂岩型铀矿成矿[R].成都:成都理工大学,2007. [12] 叶培盛,吉风宝,孙玉军,等.腾冲火山活动区新构造体系与动力学背景研究成果报告[R].北京:中国地质科学院地质力学研究所,2015. [13] 李彪.云南省德宏州陇川县章凤镇费岗村地热可行性研究勘查报告[R].大理:云南南方地勘工程总公司,2016. [14] 张颖.辽宁凌海地区深层地热资源赋存条件与开发利用分析[J].科技创新导报,2014,11(7):88. [15] 郎旭娟,蔺文静,刘志明,等.贵德盆地地下热水水文地球化学特征[J].地球科学,2016,41(10):1723-1734. [16] 张雪,周训,李再光,等.河北丰宁县洪汤寺温泉的水化学与同位素特征[J].水文地质工程地质,2010,37(5):123-127. [17] 郑克棪,多吉,田廷山,等.中国高温地热勘查开发—四川省甘孜藏族自治州高温地热资源专题研究论文集[M].北京:地质出版社,2013. [18] 刘进达,刘恩凯,赵迎昌,等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘察科学技术,1997(4):14-18. [19] 王现国,张慧,张娟娟.开封凹陷区地热水水化学特征及同位素分析[J].安全与环境工程,2012,19(6):88-91. [20] 王恒纯.同位素水文地质概论[M].北京:地质出版社,1991. [21] 文冬光.用环境同位素论区域地下水资源属性[J].地球科学:中国地质大学学报,2002,27(2):141-147. [22] 钱会,马致远.水文地球化学[M].北京:地质出版社,2005:124-127. [23] Zhou Xun,Fang Bin,Zhou Haiyan,et al. Isotopes of deuterium and oxygen-18 in thermal groundwater in China[J].Environmental Geology,2009,57(8):1807-1814.
点击查看大图
计量
- 文章访问数: 1590
- HTML浏览量: 542
- PDF下载量: 360
- 被引次数: 0