Features of karst development and geotechnical effects in the Liaoshan Tunnel on the E-Han expressway
-
摘要: 峨汉高速廖山隧道地处西南岩溶区,岩溶地质灾害频发。在开展岩溶区地质环境调研的基础上,厘清隧址区岩溶发育特征,浅析隧址区岩溶发育规律及其控制因素,最后探究了岩溶发育的工程效应。结果表明:隧址区岩溶形态多样,呈现多尺度、多样化、密集性发育的特征;岩溶在控溶因素的耦合作用下表现出显著的选择性、方向性、分层性、不均匀性以及系统连贯性等规律,其中地层岩性及其组合情况是物质基础,地形地貌与地质构造特征是主导条件,而水文地质条件是决定性因素;岩溶发育的工程效应表现在隧洞稳定性、岩溶涌水突泥和全寿命周期内的影响三个方面,不良岩溶地质体及岩溶富水空间的存在极易诱发洞身大变形、隧底岩溶塌陷等稳定性问题,以及局部静态岩溶水突出与湖水倒灌等涌水突泥灾害,甚至对隧道结构在运营期内的稳定性和耐久性造成不利影响。Abstract: The Liaoshan tunnel on the E-Han expressway is located in a karst area of southwest China with frequent geological hazards. Based on the investigation of the geological environment in the karst area,this work clarified the characteristics of karst development in the tunnel site area,analyzed its law and controlling factors,and examined its effects on the site. The results show that the karst morphology in the tunnel site area is diverse,characterized by multiple scales,diversity,and dense development. The karst shows significant selectivity,directionality,layering,heterogeneity,and system coherence and other laws,in which stratigraphic lithology and its combination are the material basis,topographic features and geological structural characteristics are the dominant conditions,and hydrogeological conditions are the decisive factors. The engineering effects of karst development are mainly expressed in 3 aspects, the stability of the tunnel,karst gushing water inrush and effect of tunnel life cycle. The existence of bad karst geological bodies and karst water-rich spaces can easily induce stability problems such as large cave deformation and karst collapses at the bottom of the tunnel as well as local static karst water outbursts and lake water flood and mud flooding disasters,sometimes even affecting the stability and durability of the tunnel structure during the operation period.
-
Key words:
- E-Han expressway /
- karst tunnel /
- development regularity /
- controlling factors /
- engineering effects /
-
[1] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015. [2] 殷颖, 田军, 张永杰. 岩溶隧道灾害案例统计分析研究[J]. 公路工程, 2018, 43(4): 210-214,273. [3] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007. [4] 马栋, 李庚许. 宜万铁路大支坪隧道+990岩溶治理技术[J]. 中国工程科学, 2009, 11(12): 53-60. [5] 代峪. 云雾山隧道突泥灾害工程地质特征与防治[J]. 铁道建筑, 2009(10): 33-35. [6] 周晓光. 黔张常铁路大堡梁隧道岩溶发育规律及控制因素分析[J]. 铁道工程学报, 2013(10): 16-21. [7] 罗小杰. 武汉地区浅层岩溶垂向发育特征及其工程意义[J]. 工程地质学报, 2014, 22(1): 137-143. [8] 王宁, 杨春利, 赵英萍, 等. 某大型工程场地岩溶发育特征及工程地质条件评价[J]. 地震工程学报, 2016, 38(S2): 351-355,361. [9] 康春景, 张绪教, 吴中海, 等. 滇西怒江河谷潞江段岩溶发育特征及其对工程的影响[J]. 地质通报, 2012, 31(Z1): 374-381. [10] 中交第一公路勘察设计研究院有限公司. 峨眉至汉源高速公路施工总承包1-4合同段两阶段施工图设计[R]. 西安: 中交第一公路勘察设计研究院有限公司, 2017. [11] 中交第一公路勘察设计研究院有限公司. 廖山隧道专项水文地质勘察成果报告[R]. 西安: 中交第一公路勘察设计研究院有限公司, 2017. [12] 四川省地质矿产勘察开发局应用地球物理研究所. 峨眉至汉源高速公路工程第B1标段廖山隧道工程物探勘察报告[R].西昌: 四川省地质矿产勘察开发局应用地球物理研究所, 2016. [13] 吕耀成, 李钰强, 张富荣, 等. 莲花台水电站岩溶发育特征及工程意义[J]. 中国岩溶, 2019, 38(4): 502-507. [14] 黄光明, 李长安, 余芝华, 等. 福建永安大湖盆地岩溶地貌双向演化过程及工程地质意义[J]. 科学技术与工程, 2019, 19(27): 88-97. [15] 孙广辉, 辛聪聪, 王运生, 等. 金沙江白鹤滩水电站旱谷地料场岩溶发育特征及工程效应[J]. 科学技术与工程, 2019, 19(25): 90-97. [16] 王建秀, 杨立中, 刘丹, 等. 铁路岩溶塌陷灾害发育规律及危险性分区研究[J]. 铁道工程学报, 2000(3): 83-86.
点击查看大图
计量
- 文章访问数: 1618
- HTML浏览量: 637
- PDF下载量: 155
- 被引次数: 0