Evaluation method of development degree based on features of intense dissolution layer
-
摘要: 岩溶发育程度评价结论不能合理反映地基实际的岩溶问题处理难度,是导致目前岩溶区建筑基础选型失误屡见不鲜的根本原因。本文以南宁市吴圩国际机场新航站楼为工程背景,分析了现有的岩溶发育程度评价指标的局限性,论证了以强溶蚀带厚度作为岩溶发育程度评价指标的先进合理性,提出了岩溶发育程度评价的建议标准,结果表明:基于地基溶蚀率深度分布曲线划分的地基强溶蚀带,综合考虑了地基的岩面溶蚀和洞隙发育的主要深度范围,其分布特征能反映岩溶地基最为复杂的深度范围,其作为场地岩溶发育程度评价指标是合理的,其岩溶发育程度评价标准建议如下:当强溶蚀带厚度(M)分别为:<3.0 m,3.0 m≤M≤6.0 m,≥6.0 m时,场地岩溶发育程度可分别判定为岩溶弱发育、中等发育和强发育。Abstract: It is common to make errors in the selection of building foundation in karst terrains. The root reason is that the practical difficulty of karst treatment in foundation cannot be reasonably reflected by the existing evaluation of karst development degree. Taking New Terminal of Nanning Wuxu International Airport as an engineering case, this article analyzes the limitation of the existing evaluation indices of karst degree, demonstrates the advanced rationality of using intense dissolution layer’s thickness as the evaluation index of karst degree, and proposes the recommended standard of this evaluation. Results show that the intense dissolution layer, divided by the curve of dissolution ratio depth distribution in a foundation, comprehensively considers the main depth range of dissolution degree of rock surface and the development of cave dissolution, and its distribution characteristics can reflect the depth range of most complex karst foundation. As the evaluation index of karst degree, it is reasonable. Its recommended values are suggested as follows, when the thickness of an intense dissolution layer is less than 3.0 m, more than or equal to 3.0 m and less than 6.0 m ,and more than or equal to 6.0 m, the karst degree can be determined as weak development, medium development and strong development, respectively.
-
Key words:
- karst foundation /
- karst development degree /
- intense dissolution layer
-
[1] 郑伟国,谢毓才,薛绪标. 岩溶地区桩基选型浅谈[J]. 岩土工程学报, 2011, 33(sup.2): 404-407 [2] 韩建强, 李伟科, 黄俊光, 等.岩溶地区复合地基承载力的计算[J].工业建筑,2019,49(3):132-140. [3] 秦云, 张军, 解志勇, 等.昆明岩溶地区桩基设计和施工问题探讨[J].建筑技术,2019,50(10):1166-1169. [4] 李想, 尹骥, 卫佳琦, 等.深覆盖岩溶地区高层建筑桩基优化实践[J]. 中国岩溶,2019, 38(4): 591-599. [5] 李永贵.岩溶地区修建客运专线勘察及设计对策研究[J].铁道工程学报,2017,34(6):1-7. [6] 杜海龙, 贺茉莉, 罗小斌, 等.岩溶地区某广场钻孔灌注桩基础补强加固设计与新技术[J].中国岩溶,2019,38(4): 600-606. [7] 缪世贤,黄敬军,武鑫,等. 徐州岩溶地质调查及其发育特征分析[J].水文地质工程地质,2017,44(2):172-177. [8] 贾龙,蒙彦,潘宗源,等. 钻孔雷达反射成像在岩溶发育场地探测中的应用[J].中国岩溶,2019,38(1):124-129. [9] 张可能,张岳,廖阳,等. 贵阳某地铁车站岩溶发育特征及突水模式分析[J].中国岩溶,2018,37(2):300-306. [10] 郭长宝, 郭书泰, 彭涛, 等. 辽宁省大窑湾某建筑场地岩溶发育特征及工程地质条件评价[J]. 中国岩溶, 2010, 29(2): 176-182. [11] 罗小杰, 张三定, 沈建.武汉地区表层岩溶带发育特征[J].中国岩溶,2018,37(5):650-658. [12] 曹贤发, 张家生, 刘之葵, 等. 岩溶建筑地基溶蚀程度及深度分布规律[J]. 中南大学学报(自然科学版),2014,45(8):2787-2792. [13] 曹贤发, 张家生, 刘之葵, 等. 溶蚀程度随高程分布特征的定量分析方法[J]. 中南大学学报(自然科学版),2014, 45(7):2339-2345. [14] 曹贤发,刘之葵,李海玲,等. 岩溶建筑地基强溶蚀带划分[J]. 水文地质工程地质,2015,42(6):91-95.
点击查看大图
计量
- 文章访问数: 1594
- HTML浏览量: 615
- PDF下载量: 146
- 被引次数: 0