Impact and scraping effects of the high-elevation,long-runout "7.23" landslide in Shuicheng , Guizhou
-
摘要: 以2019年贵州水城“7.23”滑坡为例,采用现场调查、无人机航测和数值模拟技术,分析了滑坡的运动过程和冲击铲刮特征,结果表明:(1)水城“7.23”滑坡属典型的高位远程滑坡,滑体高位启动后冲击下方凸起山脊,铲刮地表残坡积土层,并解体形成碎屑流,最大铲刮深度可达11 m;(2)模拟结果显示,滑坡运动最大速度为30 m?s-1,最大动能达8 900 kJ,铲刮体积达46×104 m3,最终体积为116×104 m3,灾害放大效应明显;(3)水城滑坡的冲击铲刮过程可分为冲击嵌入→剪切推覆→裹挟混合三个阶段。Abstract: This paper analyzes the Shuicheng"7.23" landslide in Guizhou, 2019. Based on the field survey, Unmanned Aerial Vehicle(UAV) images and numerical simulation, the movement process, and impact and scraping effects of this landslide are characterized. Results suggest that, (1) the Shuicheng"7.23" landslide sliding volume is about 70×104 m3, with the horizontal slide distance 1,360 m, elevation difference 430 m between the front and the toe, and the equivalent friction angle 19°, implying a typical high-level, long-distance slope slide; (2) After the initiation of the slide, it hit the convex ridge, scraped the residual slope soil of the surface, disintegrated and formed a debris flow, resulting in a maximum scraping depth of 11 m; (3) The numerical simulation shows that the maximum velocity of the landslide is 30 m?s-1, the maximum kinetic energy is 8,900 kJ, the scrap volume is 46×104 m3, and the deposit volume is 116×104 m3, with an obvious amplifying effect of hazard; (4) The impact and scraping process of the Shuicheng landslide can be divided into 3 stages, impact insertion, shear nappe and mixed accumulation of sliding debris.
-
[1] Gao Y, Li B, Gao H Y, et al. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng “7.23”landslide in Guizhou, China[J]. Landslides, 2020,17(1-2):1679-1680. [2] 高杨,贺凯,李壮,等.西南岩溶山区特大滑坡成灾类型及动力学分析[J].水文地质工程地质, 2020,47(4):14-23. [3] 李滨,殷跃平,高杨,等.西南岩溶山区大型崩滑灾害研究的关键问题[J].水文地质工程地质, 2020,47(4):5-13. [4] 殷跃平,王文沛,张楠,等.强震区高位滑坡远程灾害特征研究:以四川茂县新磨滑坡为例[J].中国地质,2017,44(5): 827-841. [5] 殷跃平.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226. [6] 高杨, 李滨, 王国章. 鸡尾山高速远程滑坡运动特征及数值模拟分析[J]. 工程地质学报, 2016, 24(3): 425-434. [7] Gao Y, Yin Y P, Li B, et al. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2017, 14(4): 1361-1374. [8] 殷跃平, 刘传正, 陈红旗, 等.2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J].工程地质学报, 2013, 21(1): 6-15. [9] Fan X, Xu Q, Scaringi G, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: A preliminary report[J]. Landslides, 2019, 16(1): 139-154. [10] Stiny J, Die Muren (Debris Flows)[in German],Wagnerschen Univ (1910) Buchhandlung, Innsbruck,Austria.English translation ,EBAConsult.,Vancouver,Canada,1997. [11] Heim A (1932), Bergsturz und Menschenleben [in German], Naurforschenden Gesellschaft, Zurich, Switzerland.[Englishtranslation,BiTechPubl.,Vancouver,Canada,1989.] [12] Hungr O, Evans S G. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 2004,116(9-10): 1240-1252. [13] McDougall S,Hungr O.Dynamic modelling of entrainment in rapid landslides[J].Canadian Geotechnical Journal,2005,42(5): 1437-1448. [14] Bouchut F, Fernandez-Nieto E D, Mangeney A, et al. On new erosion models of Savage-Hutter type for avalanches[J]. Acta mechanica, 2008, 199(1-4): 181-208. [15] Iverson R M, Reid M E, Logan M, et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J].Nature Geoscience,2011,4(2): 116-121. [16] Iverson R M. Elementary theory of bed‐sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3):F03006. [17] 殷跃平. 汶川八级地震滑坡高速远程特征分析[J]. 工程地质学报, 2009, 17(2): 153-166. [18] 何思明, 李新坡, 吴永. 滚石冲击荷载效应下土体屈服特性研究[J]. 岩石力学与工程学报, 2008(S1): 2973-2977. [19] 许强, 郑光, 李为乐, 等. 2018 年 10 月和 11 月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018 (6): 16. [20] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11): 2612-2628. [21] 刘春,张晓宇,许强,等.三维离散元模型的滑坡能量守恒模拟研究[J]. 地下空间与工程学报, 2017,13(S2):698-704. [22] 陆鹏源, 侯天兴, 杨兴国, 等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 2016, 35(6): 1225-1232. [23] 李祥龙, 唐辉明, 熊承仁, 等. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学, 2012, 33(5): 1527-1534. [24] 张龙,唐辉明,熊承仁,等.鸡尾山高速远程滑坡运动过程 PFC3D模拟[J]. 岩石力学与工程学报, 2012, 31(S1): 2601-2611. [25] 何潇,陈洪凯,赵 鹏,等.长江巫峡岸坡座滑式危岩稳定性研究:以望霞座滑式危岩为例[J].中国岩溶,2013,32(4):411-418. [26] Hungr O, Evans S G. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 2004, 116(9-10): 1240-1252. [27] McDougall S, Hungr O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097. [28] McDougall S. A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain[D].USA: University of British Columbia, 2006. [29] Hungr O, Dawson R F, Kent A, et al. Rapid flow slides of coal-mine waste in British Columbia, Canada[J].Reviews in Engineering Geology, 2002,15(1):191-208. [30] Xing A,Yuan X, Xu Q, et al. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China[J]. Landslides,2017,14(1):83-98. [31] 高杨,李滨,高浩源,等.高位远程滑坡冲击铲刮效应研究进展及问题[J/OL].地质力学学报:1-10[2020-08-27].http://kns.cnki.net/kcms/detail/11.3672.P.20200821.2057.006.html.
点击查看大图
计量
- 文章访问数: 1388
- HTML浏览量: 913
- PDF下载量: 201
- 被引次数: 0