Geological models classification of deformation and failures for collapses and landslides in karst mountainous areas
-
摘要: 岩溶山区特殊的地质结构导致崩塌、滑坡等地质灾害时常发生,带来了严重的人员伤亡和经济社会损失。研究岩溶山区崩滑灾害特征,建立相应的变形破坏地质模式,对于岩溶山区崩滑灾害风险防控与治理工程具有重要理论意义与指导价值。文章以典型地质灾害形成演化过程为例,在系统地分析研究区典型崩滑灾害地质背景、影响因素、动力学与运动学特征的基础上,提出了岩溶山区崩滑灾害变形破坏地质模式,得出以下主要结论:(1)影响崩滑成灾基本因素(崩滑灾害体势能、岩溶结构面、岩组结构、斜坡地貌和斜坡结构)、影响因素(水文地质条件、工程活动、地震、降雨)和变形运动特征(运动形式和变形机制)三个方面,据此建立了岩溶山区崩滑灾害地质分类指标体系。(2)结合研究区特征对模型体系里面的每个要素进行系统分析,崩滑灾害的发生是各个要素相互组合、相互作用的结果。(3)总结了研究区内5种典型崩滑地质模式:高势能反倾降雨型高速远程滑坡—碎屑流模型、高势能斜倾视向采矿型高速远程崩滑灾害模型、超高势能横向陡倾地震型高速远程滑坡、高势能采矿型高速崩塌—碎屑流模型、低势能差异风化崩塌模型。为后续开展物理模拟、数值模拟、稳定性计算和变形破坏预测等工作奠定基础。下一步将更加深入全面地建立研究区的崩滑灾害模式,并进行崩滑灾害的危险性分级工作。Abstract: The special engineering hydrology structure in karst mountainous areas results in extremely developed geological disasters such as collapses, landslides and debris flow, which bring about serious casualties and economic and social losses. It is of great theoretical and application values for risk prevention and management in such areas to study characteristics of these hazards and establish corresponding geological models. This article systematically analyzes the geological background, influencing factors and dynamics and kinematics characteristics of collapses and landslides in the study area, and establishes geological models of deformation and failures taking the formation and evolution of typical collapses and landslides as examples. Results show that, (1) the factors that affect and reflect the characteristics of collapses and landslides can be divided into basic factors including gravity potential energy, rock group structure, karst structural planes, slope topography, slope stucture; and influencing factors such as hydrogeological conditions, engineering activities, earthquakes, rainfall and deformation movement characteristics (movement forms and deformation mechanisms). Based on these, a comprehensive index system of collapses and landslides is established. (2) Systematic analyis on each element in the model system suggests that the occurrence of collapse and landslide hazards is the result of the combination and interaction of various elements. (3) Combined with typical cases of collapse and landslide hazards in the study area, five typical geological models are established. They are the high potential energy-anti-dipping-rainfall induced high-speed long-distance landslide-debris flow model, high potential energy-oblique tilting direction-mining induced high-speed long-distance landslide model, ultra-high potential energy-lateral steep seismic induced high-speed long-range landslide model, high potential energy mining induced high-speed collapse-debris flow model, and the low potential energy-differential weathering collapse model. These geological models lay the foundation for subsequent physical simulation, numerical modeling, stability calculation and deformation and failure prediction. The next step is to build more comprehensive models of collapse and landslide hazards in the study area and carry out the risk classification of these hazards.
-
[1] 黄润秋,许强,等.中国典型灾难性滑坡[M].北京:科学出版社,2008. [2] 李滨,冯振,张勤,等.岩溶山区特大崩滑灾害成灾模式与早期识别研究[M].北京:科学出版社,2016:23-46. [3] 刘广润,晏鄂川,练操.论滑坡分类[J]. 工程地质学报, 2002,10(4): 339-342. [4] Varnes D J. Slope movement types and processes[M]//Schuster R L, Krizek R J. Landslides, analysis and control. Washington, DC: Transportation research board, National Academy of Sciences, 1978:11-33. [5] Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update [J]. Landslides, 2014, 11:167-194. [6] 晏鄂川,刘广润. 试论滑坡基本地质模型[J].工程地质学报,2004,12(1):21-24. [7] 韩行瑞.岩溶水文地质学[M].北京:科学出版社.2015. [8] 中华人民共和国行业标准编写组.工程岩体分级标准[S].北京:中国计划出版社,2014. [9] 施斌,阎长虹.工程地质学[M].北京:科学出版社,2017. [10] 乔建平,吴彩燕, 田宏岭. 长江三峡库区云—巫山段斜坡坡度对滑坡的贡献率[J].山地学报,2007,25(2):207-211. [11] 李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,1994. [12] 伍法权.三峡库区高切坡变形破坏机制[M].北京:中国三峡出版社,2010. [13] 李滨,殷跃平,高杨,等.西南岩溶山区大型崩滑灾害研究的关键问题[J].水文地质工程地质,2020,47(4):5-13. [14] 黄润秋, 张伟锋, 裴向军.大光包滑坡工程地质研究[J]. 工程地质学报, 2014,22(4): 557-585. [15] 高杨,贺凯,李壮,等.西南岩溶山区特大滑坡成灾类型及动力学分析[J].水文地质工程地质, 2020,47(4):14-23. [16] 黄润秋, 李渝生, 严明.斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 2017,25(5): 1165-1181. [17] 殷跃平, 朱继良, 杨胜元.贵州关岭大寨高速远程滑坡碎屑流研究[J]. 工程地质学报, 2010,18(4): 445-454. [18] 易连兴.西南岩溶石山区复合水动力场滑坡影响模式:以关岭县大寨滑坡为例[J].水文地质工程地质, 2020,47(4):43-50. [19] 李晓, 张年学, 盛祝平,等. 武隆鸡尾山滑坡发生机制与裂缝成因分析[J].岩石力学与工程学报,2020,39(1):1-12. [20] 许强, 黄润秋, 殷跃平, 等. 2009年6?5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009,17(4): 433-444. [21] 张伟锋.工程地质研究[D].成都:成都理工大学,2015. [22] Fan X M, Xu Q, Scaringi G, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report [J].Landslide, 2019, 16(1):139-154. [23] 肖锐铧, 陈红旗, 冷洋洋, 等. 贵州纳雍“8?28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报,2018,29(1):3-9. [24] 郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018,26(1): 223-240. [25] 黄达,杨伟东,陈智强.考虑软弱基座风化效应的望霞危岩崩塌机制分析[J].人民长江,2018,49(6):64-78. [26] 陈洪凯,王圣娟. 望霞危岩破坏模式及其力学解译[J]. 重庆师范大学学报(自然科学版),2018,35(1):48-55.
点击查看大图
计量
- 文章访问数: 1597
- HTML浏览量: 961
- PDF下载量: 210
- 被引次数: 0