• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南煤系地层山区采动型崩滑灾害研究关键问题

李军 褚宏亮 李滨 贺凯 高杨

李军, 褚宏亮, 李滨, 贺凯, 高杨. 西南煤系地层山区采动型崩滑灾害研究关键问题[J]. 中国岩溶, 2020, 39(4): 453-466. doi: 10.11932/karst20200401
引用本文: 李军, 褚宏亮, 李滨, 贺凯, 高杨. 西南煤系地层山区采动型崩滑灾害研究关键问题[J]. 中国岩溶, 2020, 39(4): 453-466. doi: 10.11932/karst20200401
LI Jun, CHU Hongliang, LI Bin, HE Kai, GAO Yang. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. CARSOLOGICA SINICA, 2020, 39(4): 453-466. doi: 10.11932/karst20200401
Citation: LI Jun, CHU Hongliang, LI Bin, HE Kai, GAO Yang. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. CARSOLOGICA SINICA, 2020, 39(4): 453-466. doi: 10.11932/karst20200401

西南煤系地层山区采动型崩滑灾害研究关键问题

doi: 10.11932/karst20200401
基金项目: 国家重点研发计划项目(2018YFC1504806);国家自然科学青年基金(41907257)

Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China

  • 摘要: 文章在分析采矿型崩滑灾害发育特征的基础上,得出西南煤系地层山区地下采动型崩滑灾害常发生在层状碳酸盐岩与碎屑岩地层组成的褶皱翼部和核部的陡崖带上,与地形地貌、地层结构与地下采矿工程活动等因素关系密切,并指出薄矿层开采诱发大型山体崩滑灾害的具体过程:①采空后覆岩顶板塌落—覆岩顶板离层,采空区上覆岩层内部及层间自下而上应力传递;②地下水运移通道形成,并加快更大范围岩体结构破坏及扩展,加速了岩体结构面的松动与破坏;③上覆岩层不均匀沉降导致坡脚压裂,山体大型岩体结构面逐渐拉剪或压剪变形扩展,最终山体发生累积损伤与大规模崩滑灾害。此外,传统经验公式的计算方法对此类采矿型崩滑灾害已不适用,建议开展西南煤系地层山区地质结构与地下采动诱发崩滑灾害的相互作用关系、薄矿层采空区上部山体累积断裂损伤—岩体松动、裂隙扩展-岩溶管道流、裂隙流变化的链式响应机制、地下采动型崩滑灾害评价方法等关键科学问题的研究,以推动采矿型地质灾害防灾减灾工作的发展。

     

  • [1] Krahn J,Morgenstern N R. Mechanics of the Frank slide[C]//Rock Engineering for Foundations&Slopes.ASCE,1976: 309.
    [2] Bentley S P, Siddle H J. Landslide research in the South Wales coalfield[J]. Engineering Geology,1996,43(1): 65-80.
    [3] Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181.
    [4] 何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社,2003.
    [5] 黄刚,郑达.贵州开阳磷矿山体崩塌形成机理与数值模拟[J].中国地质灾害与防治学报,2013,24(1):46-50,55.
    [6] 孙广忠. 中国典型滑坡[M]. 北京:科学出版社,1988.
    [7] 殷跃平,康宏达,张颖.链子崖危岩体稳定性分析及锚固工程优化设计[J].岩土工程学报,2000,20(5):599-603.
    [8] Zheng D, Frost J D, Huang R Q, et al. Failure process and modes of rockfall induced by underground mining: A case study of Kaiyang Phosphorite Mine rockfalls[J]. Engineering geology, 2015, 197(10): 145-157.
    [9] 李滨,王国章,冯振,等.地下采空诱发陡倾层状岩质斜坡失稳机制研究[J].岩石力学与工程学报,2015,34(6):1148-1161.
    [10] 黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [11] 王磊,李滨,冯振,等.武隆县羊角场镇厚层灰岩山体大型危岩体破坏模式及成因机制研究[J].地质学报,2015,89(2):461-471.
    [12] He K, Yin Y P, Li B, et al. The mechanism of the bottom-crashing rockfall of a massive layered carbonate rock mass at Zengziyan, Chongqing, China[J]. Journal of Earth System Science, 2019, 128(4): 104.
    [13] 赵建军,马运韬,蔺冰,等.平缓反倾采动滑坡形成的地质力学模式研究:以贵州省马达岭滑坡为例[J].岩石力学与工程学报,2016,35(11):2217-2224.
    [14] 殷跃平.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226.
    [15] 李滨,冯振,张勤,等.岩溶山区特大崩滑灾害成灾模式与早期识别研究[M]. 北京:科学出版社,2016.
    [16] 董秀军,裴向军,黄润秋.贵州凯里龙场镇山体崩塌基本特征与成因分析[J].中国地质灾害与防治学报,2015,26(3):3-9.
    [17] 郑光,许强,巨袁臻,等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J].工程地质学报,2018,26(1):223-240.
    [18] 黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展,2005,20(3):292-297.
    [19] 李滨,殷跃平,高杨,等.西南岩溶山区大型崩滑灾害研究的关键问题[J].水文地质工程地质,2020,47(4):5-13.
    [20] 贺凯,陈春利,冯振,等.塔柱状岩体崩塌灾害研究现状[J].地质力学学报,2016,22(3):714-724.
    [21] 贺凯. 塔柱状岩体崩塌机理研究[D].西安:长安大学,2015.
    [22] Shi W B, Yu X X, Sherizadeh T, et al. Deformation and Failure Mechanism of a collapse induced by underground mining—A study of the Pusa collapse in Guizhou province of China[C]//53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2019.
    [23] 刘天泉.大面积采场引起的采动影响及其时空分布规律[J].矿山测量,1981(1):70-77.
    [24] 刘天泉.矿山岩体采动响应与控制工程学及其应用[J].科技导报,1994(12):21-23.
    [25] 刘天泉.矿山岩层和地表变形规律及其与地质因素的关系[J].煤田地质与勘探,1985(3):31-35.
    [26] 刘天泉. 矿山采动影响工程学及其应用[A].世纪之交的煤炭科学技术学术年会论文集[C].北京:《煤炭学报》编辑部, 1997, 48-51.
    [27] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [28] 钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982(2):6-16.
    [29] 钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [30] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):2-7.
    [31] 何满潮,黄润秋,王金安,等.工程地质数值法[M].北京:科学出版社,2006.
    [32] 左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,2017,42(6):1372-1379.
    [33] Guo W, Zhao G, Lou G, et al. A new method of predicting the height of the fractured water-conducting zone due to high-intensity longwall coal mining in China[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2789-2802.
    [34] Tang F. Research on mechanism of mountain landslide due to underground mining[J]. Journal of Coal Science and Engineering (China), 2009, 15(4): 351.
    [35] Marschalko M, Yilmaz I, Bednárik M, et al. Deformation of slopes as a cause of underground mining activities: three case studies from Ostrava-Karviná coal field (Czech Republic)[J]. Environmental Monitoring and Assessment, 2012, 184(11): 6709-6733.
    [36] 汤伏全.采动滑坡的机理分析[J].西安矿业学院学报,1989(3):32-36.
    [37] 龙建辉,李坤,郭晓娟.地下采动影响下滑坡稳定性及推力研究综述[J].太原理工大学学报,2019,50(2):141-152.
    [38] Franks C A M, Geddes J D. Subsidence on steep slopes due to longwall mining[J]. International Journal of Mining and Geological Engineering, 1986, 4(4): 291-301.
    [39] 林锋,孙赤,冯亮.近水平煤层开采诱发崩塌形成机理分析[J].中国地质灾害与防治学报,2013,24(3):8-12.
    [40] Tang J, Dai Z, Wang Y, et al. Fracture failure of consequent bedding rock slopes after underground mining in mountainous area[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2853-2870.
    [41] Tang J, Dai Z, Wang Y, et al. Fracture failure of consequent bedding rock slopes after underground mining in mountainous area[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2853-2870.
    [42] Yin Y P, Sun P, Zhang M, et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides, 2011, 8(1): 49-65.
    [43] Fan G, Zhang D, Zhai D, et al. Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully[J]. Journal of Coal Science and Engineering (China), 2009, 15(4): 346.
    [44] Zhang D, Fan G, Wang X. Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies[J]. International Journal of Mining Science and Technology, 2012, 22(1): 47-50.
    [45] Liu H,Deng K,Zhu X,et al.Effects of mining speed on the developmental features of mining-induced ground fissures[J].Bulletin of Engineering Geology and the Environment,2019,78(8): 6297-6309.
    [46] 范士凯.采空区上边坡稳定问题[J].资源环境与工程,2006,20(S1):617-627.
    [47] Daughton G, Noake J S, Siddle H J. Some hydrogeological aspects of hillsides in South Wales[C]//Proceedings of a Conference Rock Engineering,Newcastle upon Tyne, 1976: 423-439.
    [48] Gostelow T P. The development of complex landslides in the Upper Measures of Blaina, South Wales[C]//Proc. Symposium on the Geotechnics of Structually Complex Formations. Capri., 1977: 225-268.
    [49] Benko B. Numberial modelling of complex slope deformations[D]. Saskatoon :University of Saskatchewan, 1997.
    [50] Benko B, Stead D. The Frank slide: a reexamination of the failure mechanism[J]. Canadian Geotechnical Journal, 1998, 35(2):299-311.
    [51] Marschalko M, Fuka M, Treslin L. Influence of mining activity on selected landslide in the Ostrava-Karvina coalfield[J]. Acta Montanistica Slovaca, 2008, 13(1): 58-65.
    [52] Marschalko M,Yilmaz I,Bednárik M,et al.Influence of underground mining activities on the slope deformation genesis:Doubrava Vrchovec,Doubrava Ujala and Staric case studies from Czech Republic[J].Engineering Geology,2012,147(10): 37-51.
    [53] Grenon M, Caudal P, Amoushahi S, et al. Analysis of a large rock slope failure on the east wall of the LAB chrysotile mine in Canada: back analysis, impact of water infilling and mining activity[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 403-418.
    [54] Wagner E H R. Surface effects of total coal-seam extraction by underground mining methods[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1991,91(7): 221-231.
    [55] 刘传正.中国崩塌滑坡泥石流灾害成因类型[J].地质论评,2014,60(4):858-868.
    [56] Brady B H G, Brown E T. Rock mechanics: for underground mining[M]. Springer science & business media, 1993.
    [57] Huang R Q, Chan L S. Human-induced landslides China: Mechanism study and its implications on slope management[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2766-2777.
    [58] Lin F, Wu L Z, Huang R Q, et al. Formation and characteristics of the Xiaoba landslide in Fuquan,Guizhou,China[J].Landslides,2018,15(4):669-681.
    [59] 刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京: 中国工业出版社,1965.
    [60] 刘天泉,仲帷林,焦传武,等.煤矿地表移动与覆岩破坏规律及其应用[M]. 北京:煤炭工业出版社,1981.
    [61] 国家安全监管总局,国家煤矿安监局,国家能源局,国家铁路局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017.
    [62] 黄庆享.采场老顶初次来压的结构分析[J].岩石力学与工程学报,1998,17(5):521-526.
    [63] Wang H, Zhang D, Wang X, et al. Visual exploration of the spatiotemporal evolution law of overburden failure and mining-induced fractures: a case study of the Wangjialing coal mine in China[J]. Minerals, 2017, 7(3): 35.
    [64] Liu S, Li W, Wang Q, et al. Investigation on mining-induced fractured zone height developed in different layers above Jurassic coal seam in western China[J]. Arabian Journal of Geosciences, 2018, 11(2): 30.
    [65] Liu S, Li W, Wang Q. Height of the water-flowing fractured zone of the Jurassic coal seam in northwestern China[J]. Mine Water and the Environment, 2018, 37(2): 312-321.
    [66] Chen Y, Zhao G, Wang S, et al. Investigations of the height of fractured zones in overburden induced by undersea mining[J]. Arabian Journal of Geosciences, 2019, 12(20): 618.
    [67] Li L, Li F, Zhang Y, et al. Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining[J]. International Journal of Coal Science & Technology, 2020,7(1): 208-215.
    [68] Cheng G, Chen C, Ma T, et al. A case study on the strata movement mechanism and surface deformation regulation in Chengchao underground iron mine[J]. Rock Mechanics and Rock Engineering, 2017, 50(4): 1011-1032.
    [69] Rezaei M, Hossaini M F, Majdi A. Determination of longwall mining-induced stress using the strain energy method[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2421-2433.
    [70] 徐廷甫,尹志明,邓月华.地下采动条件下顺层岩质边坡稳定性分析[J].地下空间与工程学报,2011,7(6):1241-1245,1262.
    [71] 李滨,王国章,冯振,等.陡倾层状岩质斜坡极限平衡稳定分析[J].岩土工程学报,2015,37(5):839-846.
    [72] Li B, Feng Z, Wang G, et al. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining[J]. Environmental Earth Sciences, 2016, 75(8): 694.
    [73] 贺凯,高杨,殷跃平,等.基于岩体损伤的大型高陡危岩稳定性评价方法[J].水文地质工程地质,2020,47(4):82-89.
    [74] Tian C, Liu Y, Yang X, et al. Development characteristics and field detection of overburden fracture zone in multiseam mining:A case study[J].Energy Science & Engineering, 2020,8(3):602-615.
    [75] Murphy M M. Shale failure mechanics and intervention measures in underground coal mines: Results from 50 years of ground control safety research[J]. Rock mechanics and rock engineering, 2016, 49(2): 661-671.
    [76] Wang C, Lu Y, Qin C, et al. Ground Disturbance of Different Building Locations in Old Goaf Area: A Case Study in China[J]. Geotechnical and Geological Engineering, 2019,37(5): 4311-4325.
    [77] 赵建军,蔺冰,马运韬,等.缓倾煤层采空区上覆岩体变形特征物理模拟研究[J].煤炭学报,2016,41(6):1369-1374.
    [78] 邓茂林,许强,郑光,等.基于离心模型试验的武隆鸡尾山滑坡形成机制研究[J].岩石力学与工程学报,2016,35(S1):3024-3035.
    [79] 贺凯,高杨,王文沛,等.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报,2018,24(3):399-406.
    [80] 刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报,2001,20(2):190-196.
    [81] 王玉川,巨能攀,赵建军,等. 缓倾煤层采空区上覆山体滑坡形成机制分析[J].工程地质学报,2013,21(1):61-68.
    [82] Porathur J L, Srikrishnan S, Verma C P, et al. Slope stability assessment approach for multiple seams highwall mining extractions[J]. International journal of rock mechanics and mining sciences, 2014, 70(9): 444-449.
    [83] Liu C, Li H, Mitri H. Effect of Strata Conditions on Shield Pressure and Surface Subsidence at a Longwall Top Coal Caving Working Face[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1523-1537.
    [84] Wang X,Zhang D,Zhang C,et al. Mechanism of mining-induced slope movement for gullies overlaying shallow coal seams[J].Journal of Mountain Science,2013,10(3): 388-397.
    [85] Feng Z, Li B, Yin Y P, et al. Rockslides on limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China[J]. Natural Hazards and Earth System Sciences, 2014, 14(9): 2627-2635.
    [86] Gu R, Ozbay U. Distinct element analysis of unstable shear failure of rock discontinuities in underground mining conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68(6): 44-54.
    [87] Kulatilake P H S W, Ge Y. Investigation of stability of the critical rock blocks that initiated the Jiweishan landslide in China[J]. Geotechnical and Geological Engineering, 2014, 32(5): 1291-1315.
    [88] 唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA2D系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报(自然科学版),1999,18(5):456-458.
    [89] 陈峰.基于数值模拟的采动影响下覆岩裂隙演化过程分析[J].中国地质灾害与防治学报,2014,25(2):60-64.
    [90] 胡海峰,康建荣.基于有限元法的采动坡体稳定 性计算[J].太原理工大学学报,2000,31(4):343-345,353.
    [91] 李腾飞,李晓,王瑞青.地下采矿诱发斜坡移动变形分析[J].工程地质学报,2014,22(1):64-70.
  • 加载中
计量
  • 文章访问数:  1543
  • HTML浏览量:  927
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 发布日期:  2020-08-25

目录

    /

    返回文章
    返回