Hydrogeochemical characteristics of the geothermal field in Wenquan basin, northern Tibet
-
摘要: 藏北温泉盆地地热资源丰富,但研究程度较低。为查明温泉盆地地热资源赋存状态及热源来源,揭示热循环机理,定量评估研究区热储温度、冷水混入比例、热循环深度等,利用温泉盆地地热田共18组温泉水样进行水化学分析,进行定量计算。结果表明:温泉盆地温泉水水化学类型主要为Ca-HCO3?SO4型。温泉盆地地下热水在向上运移过程中,受浅层地下水的混合作用影响,使得热水变为“未成熟水”。温泉水中文石、方解石等钙质热液的饱和度指数大于0。热储温度60.93~96.52 ℃,热循环深度3 238.06~5 215.28 m,冷水混入比例在20.97%~70.19%之间。硅-焓模型计算出未混入冷水时深部热储温度在81.94~167.26 ℃之间,热储循环深度4 405.56~9 145.56 m。Abstract: The Wenquan basin in northern Tibet is rich in geothermal resources, on which few studies were carried out previously. The purpose of this study is to clarify the occurrence and source of geothermal resources, reveal the mechanism of the thermal cycle,and quantitatively evaluate the temperature of the geothermal reservoirs, the mixing ratio of cold water and the depth of thermal cycle in this basin. A total 18 groups of hot spring water samples from the Wenquan basin geothermal fields were used for hydrochemical analysis and quantitative calculation. The results show that the thermal groundwater of the basin is dominated by the Ca-HCO3?SO4 type. In the process of upward migration,the geothermal water becomes "immature water" affected by the mixing effect of shallow groundwater. The saturation index (SI) of calcium hydrothermal minerals in hot spring water samples, such as aragonite and calcite, is greater than 0. The temperature of geothermal reservoirs is from 60.93 to 96.52 ℃, the depth of thermal cycle is from 3,238.06 to 5,215.28 m, and the mixing ratio of cold water ranges from 20.97% to 70.19%. The temperature and depth of geothermal circulation before mixing cold water are determined by the Si-enthalpy model as 81.94 to 167.26 ℃ and 4,405.56 m to 9,145.56 m, respectively. These results can provide data support and theoretical support for the future geothermal research in northern Tibet, as well as a reference for the study of groundwater development and utilization in the study area.
-
[1] 钟鑫.大庆油田地热资源综合利用节能前景分析[J]. 石油石化节能, 2014(2): 38-40. [2] 佟伟,章铭陶,张知非,等.西藏地热[M].北京:科学出版社,1980. [3] 廖志杰,赵平.滇藏地热带—地热资源和典型地热系统[M].北京:科学出版社,1999. [4] 多吉.典型高温地热系统:羊八井地热田基本特征[J].中国工程科学,2003,5(1):42-47. [5] 佟伟,廖志杰,刘时彬,等.西藏温泉志[M].北京:科学出版社, 2000. [6] 张知非,廖志杰,刘时彬,等.一九七五年度青藏高源综合科学考察报告:西藏泽格丹湖热田的地热资源[R].中科院青藏高原综合考察队,1976. [7] 张知非,朱梅湘,刘时彬,等.西藏那曲地区的地热资源[R]. 中科院青藏高原综合考察队, 1977. [8] 张国玉,孙浩,李树喜.西藏自治区那曲-尼木地热带地热调查报告[R]. 西藏地矿局地热地质大队, 1991. [9] 魏斯禹,腾吉文,杨秉平,等.西藏高原地热活动,温泉分布与地球物理场特征[J],西北地震学报,1981,3(4):17-24. [10] 伍坤宇,沈立成,王香桂.西藏朗久地热田及其温泉水化学特征研究[J].中国岩溶,2011,30(1):1-8. [11] 方 斌,杨运军,王根厚,等.藏北羌塘中部吉瓦地热田的特征及其资源评价[J].地质通报,2009,28(9):1335-1341. [12] 潘桂棠,丁俊,姚东生,等.青藏高原及邻区地质图说明书(1∶1500000)[M].成都:成都地图出版社,2004. [13] 段志明,李勇,李亚林,等.青藏高原北部温泉活动沉积盆地的沉积特征及其地质意义[J].沉积与特提斯地质,2005,25(1-2),180-188. [14] 李勇,李亚林,段志明,等.1∶25万温泉兵站幅(I46C003002)区域地质调查报告[R].成都理工大学地质调查院.2005. [15] 何文劲,徐刚,胡林,等.青海龙亚拉地区1∶5万I46E017008、I46E017009、I46E018008、I46E018009四幅区域地质调查成果报告[R].四川省地矿局川西北地质队.2015. [16] 中华人民共和国地质矿产部.DZ/T 0064.1~80-1993地下水质检验方法[S].北京:中国标准出版社,1994:1-162. [17] 国家技术监督局.GB/T8538-2008饮用天然矿泉水检验方法[S].北京:中国标准出版社,2009: 8-53. [18] Yildiray Palabiyik ,Umran Serpen .Geochemical assessment of Simav geothermal field, Turkey [J]. Revista Mexicana de Ciencias Geológicas,2008,25(3):408-425. [19] Francesco F,Stefano C,Carlo C,et al.Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy) [J].Applied Geochemistry,2009, 24: 860-875. [20] 王香桂,伍乾富,伍坤宇,等.搭格架温泉水化学特征及其约束因素研究[J].西北地质,2011,44(2):157-164. [21] Mukherjee S. Applied Mineralogy Applications in Industry and Environment [M]. New Delhi: Springer & Capital Publishing Company,2011:213-315. [22] 郑西来,刘鸿俊.地热温标中的水-岩平衡研究[J].西安地质学院学报,1996,18(1):74-79. [23] 王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612. [24] 苗慧帅.云南省下关温泉和安宁温泉的特征及成因研究[D].北京:中国地质大学(北京),2009:43-54. [25] Giggenbach W. F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J].Geochimica et Cosmochimica Acta, 1988, 52: 2749-2765. [26] 汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社, 1993: 67-82. [27] 伍坤宇.冈底斯-喜马拉雅造山系中部热泉地球化学特征及典型地热区CO2脱气通量研究[D].重庆:西南大学,2012. [28] 王皓,柴蕊.地热温标在地热系统中的应用研究[J].河北工程大学学报(自然科学版),2009,26(3) :54-58. [29] Fournier R O, Truesdell A H. Geochemical indicators of subsurface temperature-part2, Estimation of temperature and fraction of hot water mixed with cold water.Journal Research U. S. Geological Survey, 1974, 2 (3): 263-270 [30] 吴卫华.青藏高原河流水体与沉积物的地球化学研究[D].南京:南京大学,2009. [31] 杨雷.重庆市温塘峡背斜地下热水水文地球化学特征研究[D].重庆:西南大学,2012. [32] 赵佳怡,张薇,张汉雄,等.四川巴塘地热田水文地球化学特征及成因[J].水文地质工程地质,2019,46(4):81-89. [33] Reach L. Geothermal system, conductive heat flow and geothermal anomalies [A]//Geothermal Systems,Principals and Casse Histories [C]. John & Sons Ltd, 1981. 28-32. [34] 崔军文,李朋武,李莉.青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J].地质论评,2001,47(2): 157-163. [35] 段志明,李勇,张毅,等.青藏高原唐古拉山中新生代花岗岩锆石U-Pb年龄、地球化学特征及其大陆动力学意义[J].地质学报,2005,79(1):88-97. [36] 杨兴科.藏北羌塘盆地热力构造作用特征及其演化[D].西安:西北大学,2003. [37] 肖睿.西藏羌塘盆地天然气水合物气源研究[D].北京:中国地质科学院,2015. [38] White D E. Subsurface waters of different origins[A]//Extended Abstracts of Fifth International Symposium on Water2Rock Interaction [C]. National Energy Authority of Iceland, Reykjavik, 1986:629-632. [39] 沈照理,朱苑华,钟佐燊.水文地球化学基础[M].北京:地质出版社, 1993: 86-92. [40] 胡圣标,何丽娟,汪集.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626.
点击查看大图
计量
- 文章访问数: 1732
- HTML浏览量: 615
- PDF下载量: 369
- 被引次数: 0