Tectono-sedimentary differentiation of lower Palaeozoic carbonate rock in Ordos basin, NW China and its implications for hydrocarbon-play generation
-
摘要: 鄂尔多斯盆地碳酸盐岩是当前的油气勘探热点。当前对鄂尔多斯盆地不同构造区的潜在碳酸盐岩储层及圈闭仍认识不清,阻碍了勘探目标优选。本文通过构造-沉积分异特征分析,揭示了鄂尔多斯盆地早古生代碳酸盐岩台地的构造-沉积分异演化过程及其后期构造改造分异特征。结果表明,受中央古隆起和陆表海环境的控制,盆地南缘以发育镶边礁滩相储层为特征,西缘以发育层状弱镶边礁滩储层为特征,内克拉通则以局限的台地潮坪白云岩储层为特征;三个不同构造-沉积分异区的碳酸盐岩建造都具备成藏条件,但遭受的构造形变具有显著差异,可分为西缘压性构造区、南缘张性构造区和内克拉通稳定构造区;西缘陆内前陆盆地的破碎褶皱带的有利圈闭包括逆掩断层遮挡圈闭和向斜中的次级背斜圈闭;南缘受渭北地堑影响形成的张性构造带发育基底潜山相关圈闭;内克拉通的伊陕斜坡带为一长期保持构造稳定的弱改造的大型单斜构造,以发育岩性圈闭型为特征,岩性圈闭的沉积相分布主要受陆表海旋转潮汐流的约束。Abstract: The Lower Paleozoic carbonate rock in Ordos Basin is a major target of oil and gas exploration. At present, the potential reservoirs and traps of this rock in different tectonic units of Ordos Basin remain not well understood, which hinders prediction of preferable exploration targets. To solve this problem, based on the analysis of sedimentary and tectonic features, this paper reveals the sedimentary evolution and structural transformation of early Paleozoic carbonate rocks in the Ordos Basin. The results show that controlled by the Central ancient uplift and the epeiric sea environment, the southern margin of the basin is characterized by the development of rimmed reef-shoal facies association, the western margin is characterized by the development of bedded reef-shoal facies association, and the intracratonic basin is characterized by tidal flat of limited platform.The carbonate formations in the three different facies belts have favorable conditions for hydrocarbon-play generation, but their tectonic transformations are significantly different, which can be divided into a compressive tectonic unit in the west margin, extensional tectonic unit in the south margin and stable tectonic unit in the inner craton. Favorable traps in the broken fold belt of the western intracontinental foreland basin include overthrust faulting traps and secondary anticlinal traps in syncline. Traps related to buried hills developed in the south extensional tectonic unit affected by the Weibei graben. The Yishan slope of inner craton is a large monoclinal structure with weak reformation and lots of lithologic traps, and the macroscopic distribution of those lithologic traps are mainly controlled by rotary tidal current of the epeiric sea.
-
Key words:
- carbonate rock /
- epeiric platform /
- foreland basin /
- buried hills structure /
- lithologic trap
-
[1] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003. [2] 何自新, 郑聪斌, 王彩丽, 等. 中国海相油气田勘探实例之二: 鄂尔多斯盆地靖边气田的发现与勘探[J]. 海相油气地质, 2005, 10(2): 37-44. [3] 代金友, 铁文斌, 蒋盘良, 等. 靖边气田碳酸盐岩储层沉积-成岩演化模式[J]. 科技导报, 2010, 28(11): 68-73. [4] 杨华, 刘新社, 张道锋. 鄂尔多斯盆地奥陶系海相碳酸盐岩天然气成藏主控因素及勘探进展[J]. 天然气工业, 2013, 33(5): 1-12. [5] 杨华, 包洪平. 鄂尔多斯盆地奥陶系中组合成藏特征及勘探启示[J]. 天然气工业, 2011, 31(12): 11-20. [6] 肖晖, 赵靖舟, 熊涛, 等. 鄂尔多斯盆地古隆起西侧奥陶系烃源岩评价及成藏模式[J]. 石油与天然气地质, 2017, 38(6): 1087-1097. [7] 田刚, 宋立军. 鄂尔多斯盆地中元古界烃源岩热演化史模拟[J]. 石油实验地质, 2017, 39(4): 520-526. [8] 李伟, 涂建琪, 张静, 等. 鄂尔多斯盆地奥陶系马家沟组自源型天然气聚集与潜力分析[J]. 石油勘探与开发, 2017, 44(4): 521-530. [9] 张渝昌, 张荷, 孙肇才,等. 中国含油气盆地原型分析[M]. 南京:南京大学出版社, 1997: 262-293. [10] 陈安清. 鄂尔多斯地块早古生代盆地演化与物质聚集规律[D].成都: 成都理工大学博士论文, 2010 [11] DARBY, B.J., RITTS, B.D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China[J]. Earth Planet. Sci. Lett., 2002, 205 (1), 13-24. [12] 夏日元, 唐健生, 关碧珠, 等. 鄂尔多斯盆地奥陶系古岩溶地貌及天然气富集特征[J]. 石油与天然气地质, 1999, 20(2): 133-136. [13] 王雪莲, 王长陆, 陈振林, 等. 鄂尔多斯盆地奥陶系风化壳岩溶储层研究[J].特种油气藏, 2005, 12(3): 32-35. [14] Wu Yuanbao, Zheng Yongfei. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23: 1402-1428. [15] 陈刚. 鄂尔多斯地块西南部早古生代裂谷陆缘结构及其演化[D]. 西安:西北大学博士论文, 1994. [16] Dong Yunpeng, Zhang Guowei, Neubauer Franz , et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41: 213-237. [17] 许效松, 徐强, 潘桂棠, 等. 中国南大陆演化与全球古地理对比[M]. 北京: 地质出版社, 1996. [18] 左国朝, 刘寄陈. 北祁连早古生代大地构造演化[J]. 地质科学, 1987 (1): 14-24. [19] Servais T, Owen A W , Harper D A T ,et al. The Great Ordovician Biodiversification Event (GOBE): The Palaeocological dimension[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294:99-119. [20] Decelles P G & Giles K A. Foreland basin systems [J]. Basin Research, 1996, 8:105-123. [21] 欧阳征健. 鄂尔多斯盆地重点风险勘探领域综合研究与勘探目标优选. 成都: 成都理工大学博士后出站报告, 2016. [22] 罗志立. 试论中国型(C-型)冲断带及其油气勘探问题[J]. 石油与天然气地质, 1984, 5(4): 315-324. [23] 刘志武, 周立发. 渭河盆地新生代构造-沉积格局与油气成藏潜力初探[J]. 福州大学学报(自然科学版), 2015, 43(5): 708-714. [24] 刘林, 芮会超. 渭河盆地结构特征及演化研究[J]. 地质力学学报, 2018, 24(1): 60-69. [25] 王建强, 刘池洋, 高飞, 等. 陕西渭河盆地前新生界地质特征及其油气意义[J]. 地质通报, 2015, 34(10): 1981-1991. [26] Chen Jitao, Lee Hyun Suk . Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading[J]. Sedimentary Geology, 2013, 288, 81-94. [27] Pratt B R ,James N P , Cowan C A .Peritidal platform carbonates. In: Facies Models: Response to Sea Level Change (Eds. By Walker RG and James NP), 1992, pp303-322. [28] Chen Anqing, Xu Shenglin, Yang Shuai, et al. Ordovician deep dolomite reservoirs in the intracratonic Ordos Basin, China: Depositional model and Diagenetic evolution[J]. Energy Exploration & Exploitation, 2018,36(4):850-871. DOI: 10.1177/0144598718778171 [29] 贾东, 武龙, 闫兵, 等. 全球大型油气田的盆地类型与分布规律[J]. 高校地质学报, 2011, 17(2): 170-184. [30] 张国伟, 郭安林, 董云鹏, 等. 大陆地质与大陆构造和大陆动力学[J]. 地学前缘, 2011, 18(3): 1-12. [31] Powers S. Reflected bruied hills and their importance in petroleum geology[J]. Economic Geology, 1922, 17(4): 233-259. [32] 刘林, 芮会超, 陈宝赟. 渭河盆地天然气类型、成因特征及找矿远景分析[J]. 地质力学学报, 2016, 22(2): 256-268. [33] 刘志武, 白勇, 周立发. 渭河盆地结构及其油气成藏地质条件. 石油实验地质, 2016, 38(5): 584-5911.
点击查看大图
计量
- 文章访问数: 1491
- HTML浏览量: 654
- PDF下载量: 186
- 被引次数: 0