Effects of agricultural cultivation on soil organic nitrogen mineralization in karst regions
-
摘要: 土壤有机氮矿化是供应无机氮的主导过程,研究其变化对于认识土壤氮素有效性和指导氮肥施用具有重要意义。本研究分别在云南建水、蒙自和勐腊岩溶区选取脐橙地、玉米地和橡胶地作为研究对象,并以临近未受人为扰动的草地或原始林地作为对照,采用15N同位素标记方法,研究了岩溶区草地或原始林地开垦种植农作物后石灰土有机氮矿化(MNorg)速率变化,并区分了易分解有机氮矿化(MNlab)和难分解有机氮矿化(MNrec)对MNorg的贡献。结果表明,原始林地土壤MNorg (8.94 mg N?kg-1 d-1)显著高于草地(1.41~2.46 mg N?kg-1 d-1),且均以MNlab为主。其中,草地MNlab对MNorg贡献率可达80.6%~93.1%,而在原始林地中该贡献率达到62.2%。岩溶区草地或林地开垦种植经济作物显著降低MNorg速率,其MNorg速率为0.53~0.89 mg N?kg-1 d-1,下降比例达62.5%~90.1%。这种差异主要受MNlab和MNrec影响,由草地开垦种植脐橙和玉米后土壤MNorg下降主要归于MNlab速率下降,而MNrec并未发生显著变化;原始林地开垦种植橡胶后土壤MNorg下降主要归于MNlab和MNrec速率的共同下降。岩溶区草地或原始林地开垦种植农作物后土壤有机碳、全氮、全磷、全钙和全镁含量及土壤田间持水量、pH、阳离子交换量均显著降低,且与土壤MNorg和MNlab呈显著正相关,表明农业种植对土壤理化性质的改变是影响矿化速率的重要因素。Abstract: The mineralization of organic N dominates the production of inorganic N, therefore, it is of great significance to study the change of soil N availability and to guide N fertilization. Soil samples under navel orange, corn and rubber plantations were collected in karst regions of Jianshui,Mengzi and Mengla, Yunnan Province, respectively, and the adjacent undisturbed grassland and natural forest were sampled as control. The 15N tracing technique was used to investigate the changes in the mineralization rate of organic N to NH〖_4^+〗 (MNorg) in calcareous soil when grassland or natural forest was converted to croplands in karst regions, and the contributions of the mineralization of labile organic N (MNlab) and recalcitrant organic N (MNrec) to MNorg were quantified. The results showed that MNorg rate in forest soils (8.94 mg N?kg-1 d-1) was significantly higher than that in grassland soils (1.41-2.46 mg N?kg-1 d-1). Soil MNlab dominated MNorg, accounting for 80.6%-93.1% of MNorg in grassland soils and 62.2% in forest soils, respectively. Soil MNorg was significantly reduced to 0.53-0.89 mg N?kg-1 d-1 during the conversion of grassland or forest to cropland, with a decreased ratio of 62.5%-90.1%. When grassland was converted to navel orange or corn plantations, MNlab rather than MNrec was responsible for the decreased MNorg. However, the decreased MNorg was mainly attributed to the simultaneous decline in MNlab and MNrec when natural forest was converted to rubber plantation. The contents of soil organic carbon, total N, total phosphorus, total calcium and total magnesium, as well as pH, CEC and WHC were significantly reduced during the conversion of grassland or natural forest to cropland in karst regions, all of which were positively correlated with soil MNorg and MNlab, indicating that the changes in soil physical and chemical properties during agricultural cultivation was an important factor affecting MNorg.
-
Key words:
- karst regions /
- agricultural cultivation /
- 15N tracing /
- mineralization rate /
- labile organic N
-
[1] Binkley D, Hart S C. The components of nitrogen availability assessments in forest soils[M]. Advances in soil science. New York: Springer, 1989: 57-112. [2] Mackie-Dawson L A, Pratt S M, Millard P. Root growth and nitrogen uptake in sycamore (Acer pseudoplantanus L.) seedlings in relation to nitrogen supply[J]. Plant and Soil, 1994, 158(2): 233-238. [3] Booth M S, Stark J M, Rastetter E B. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data[J]. Ecological Monographs, 2005(75): 139-157. [4] 李德军.珠江三角洲森林和蔬菜地土壤一氧化氮排放[D].广州:中国科学院研究生院(广州地球化学研究所), 2007. [5] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115. [6] Kolberg R, Rouppet B, Westfall D G, et al. Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystem[J]. Soil Science Society of America Journal, 1997, 61(3): 504-508. [7] Joanne B, Chen C R, Xu Z H, et al. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia[J].Soil Biology and Biochemistry,2007(39):426-433. [8] 肖好燕,刘宝,余再鹏,等.亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J].应用生态学报,2017,28(3):730-738. [9] 沙丽清,孟盈,冯志立,等.西双版纳不同热带森林土壤氮矿化和硝化作用研究[J]. 植物生态学报,2000, 24(2):152-156. [10] 王光军,田大伦,朱凡,等.湖南省4种森林群落土壤氮的矿化作用[J]. 生态学报, 2009(3):1607-1609. [11] 单玉梅,温超,常虹,等.不同放牧强度下荒漠草原土壤氮矿化季节性动态研究[J]. 生态环境学报, 2019(4):723-731. [12] 罗亲普,龚吉蕊,徐沙,等.氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016(5):480-492. [13] 刘颖慧,李悦,牛磊,等.温度和湿度对内蒙古草原土壤氮矿化的影响[J]. 草业科学, 2014(3):349-354. [14] Zhang J B, Zhu T B, Meng T Z, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China[J]. Soil Biology & Biochemistry, 2013, 62(5):107-114. [15] 王乐云,田飞飞,能惠,等.不同施肥处理对农田土壤有机氮组分及其矿化的影响[J]. 中国海洋大学学报(自然科学版)2019(4):117-127. [16] 郑洁,张继宗,翟丽梅,等.洱海流域农田土壤氮素的矿化及其影响因素[J]. 中国环境科学, 2010(S1):35-40. [17] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展, 2001, 16(4): 461-466. [18] Jiang Z, Lian Y, Qin X. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132(3):1-12. [19] 陈同庆,魏兴琥,关共凑,等.粤北岩溶区不同土地利用方式对土壤钙离子的影响[J]. 热带地理, 2014, 34(3):337-343. [20] Wang W, Smith C J, Chalk, P M, et al. Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference[J]. Soil Science Society of America Journal, 2001(65):368-376. [21] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J]. 地球科学进展,2003,18(1):37-44. [22] 曹建华,袁道先,章程,等.受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 2004, 32(1): 1-8. [23] Bengtsson G, Bengtson P, M?nsson K F. Gross nitrogen mineralization, immobilization, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003(35):143-154. [24] Zhu T B, Zhang J B, Meng T Z, et al. Tea plantation destroys soil retention of NO〖_3^-〗, and increases N2O emissions in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73(6):106-114. [25] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000. [26] 中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [27] Müller C, Rütting T, Kattge J, et al.Estimation of parameters in complex 15N tracing models by Monte Carlo sampling.Soil Biology and Biochemistry,2007(39):715-726. [28] Lovett G M, Rueth H. Potential nitrogen mineralization and nitrification in American beech and sugar maple stands along a nitrogen deposition gradient in the northeastern US[J]. Ecological Applications, 1999, 9(1330): 44. [29] Patra A K, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6): 1005-1016. [30] Barrett J E, Burke I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient[J]. Soil Biology and Biochemistry, 2000(32):1707-1716. [31] Mack M C, D’Antonio C M. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland[J]. Ecological Applications, 2003(13): 154-166. [32] Wang J, Zhang J B, Müller C, et al. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Journal of Soils and Sediments, 2017, 17(2):423-431. [33] Fu M H, Xu X C, Tabatabai M A. Effect of pH on nitrogen mineralization in crop-residue-treated soils[J]. Biology and Fertility of Soils, 1987(5):115-119. [34] Xiao K C, Xu J M, Tang C X,et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments[J]. Soil Biology and Biochemistry, 2013(67):70-84. [35] 张凯乐.探究酸性土壤 pH 与碳氮矿化之间的相互关系[D]. 杭州:浙江大学, 2017. [36] 王其兵,李凌浩,白永飞,等.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报, 2000, 24(6):687-692. [37] Schuur E A, Matson P A. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in hawaiian montane forest[J]. Oecologia, 2001, 128(3):431-442. [38] Pandey C B, Rai R B, Singh L. Seasonal dynamics of mineral N pools and N-mineralization in soils under homegarden trees in South Andaman, India[J]. Agroforestry Systems, 2007, 71(1):57-66. [39] Standford G, Smith S. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal,1972,36(3):465-472. [40] 唐树梅,漆智平.土壤水含量与氮矿化的关系[J]. 热带作物研究, 1997(4):54-60. [41] 于一.分解底物质量对森林土壤氮矿化动态的调控作用[D].北京:北京林业大学, 2016.. [42] Yannikos N, Leinweber P, Helgason B L, et al. Impact of populus trees on the composition of organic matter and the soil microbial community in Orthic Gray Luvisols in Saskatchewan (Canada)[J]. Soil Biology & Biochemistry,2014,70(2):5-11.
点击查看大图
计量
- 文章访问数: 1402
- HTML浏览量: 599
- PDF下载量: 191
- 被引次数: 0