Sources and transformation of nitrate in karst groundwater of Zengpiyan site, Guilin
-
摘要: 峰林平原是人类活动和居住的密集区,也是岩溶地下水系统的主要径流、排泄地段,地下水资源丰富。随着城市化的发展,地下水硝酸盐污染问题日渐突出。为研究桂林甑皮岩岩溶地下水硝酸盐来源与转化,分别于2018年10月、2019年2月、3月和4月采集地下水样,利用常规水化学及氮氧同位素技术识别硝酸盐来源与转化。结果表明:甑皮岩地下水中NO3-浓度在0~19.523 mg?L-1,δ15N-NO3-和δ18O-NO3-分别在-0.17‰~45.12‰和-5.82‰~16.47‰。硝酸盐氮氧同位素数据表明,甑皮岩地下水硝酸盐来源主要为粪便及污废水,少量来自降雨中的NH4+和土壤有机氮。受岩溶介质不均一性的控制,甑皮岩地下水中NO3-浓度、δ15N-NO3-和δ18O-NO3-均表现出明显的空间变异性。甑皮岩地下水硝酸盐的转化过程复杂,受控于季节和岩溶介质不均一性,表现为旱季以反硝化为主,雨季则以硝化过程为主。厘清硝酸盐来源与转化为治理甑皮岩地下水硝酸盐污染提供一定的科学依据。Abstract: The peak-forest plain is a concentration area of human activities and living, and also the main runoff and discharge section of karst groundwater systems, with rich groundwater resources. With the development of urbanization, the problem of groundwater nitrate pollution has becomes increasingly prominent. In order to study the source and transformation of nitrate in the karst groundwater of Zengpiyan site in Guilin, groundwater samples were collected in October 2018, February 2019, March 2019 and April 2019, respectively.By virtue of these samples, using conventional water chemistry and nitrogen and oxygen isotope techniques, this work identified groundwater nitrate sources and transformation process. The results show that the concentration of NO3- in the groundwater of Zengpiyan is 0-19.523 mg?L-1, and δ15N-NO3- and δ18O-NO3- are between -0.17 ‰-45.12 ‰ and -5.82 ‰-16.47 ‰, respectively. According to the data of nitrogen and oxygen isotopes of groundwater in the study area, the source of nitrate in groundwater is mainly feces and wastewater, a small amount of nitrate comes from NH4+ in rainfall and soil organic nitrogen. Controlled by the heterogeneity of karst medium, NO3-concentration, δ15N-NO3- and δ18O-NO3- in the groundwater of Zengpiyan show obvious spatial variability. The process of nitrate transformation of groundwater in Zengpiyan is complex, which is controlled by seasons and the heterogeneity of karst medium. Denitrification is the main process in dry seasons and nitrification in rainy seasons. Clarifying the source and transformation of nitrate can provide a scientific basis for the control of nitrate pollution in groundwater of the Zengpiyan site.
-
Key words:
- Peak forest plain /
- nitrate /
- nitrogen and oxygen isotope /
- karst groundwater /
- Guilin Zengpiyan
-
[1] 裴建国,梁茂珍,陈阵.西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J].中国岩溶,2008,27(1):6-10. [2] 刘长礼, 王秀艳, 吕敦玉, 等. 中国南方岩溶地下水面源污染风险评价及防控对策[J]. 地球学报, 2017(06):67-75. [3] 王开然, 姜光辉, 郭芳,等. 桂林峰林平原区岩溶含水层氮污染空间分布特征[J]. 环境科学研究, 2013, 26(3):281-286. [4] Rademacher J J , Young T B , Kanarek M S . Gastric Cancer Mortality and Nitrate Levels in Wisconsin Drinking Water[J]. Archives of Environmental Health: An International Journal, 1992, 47(4):292-294. [5] Zhai Y , Zhao X , Teng Y , et al. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China[J]. Ecotoxicology and Environmental Safety, 2017, 137:130-142. [6] Kendall C, Elliott E M, Wankel S D, Michener R H, Lajtha K. Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isotopes in Ecology and Environmental Science, 2nd ed. Blackwell, Oxford, U. K,2007,375-449. [7] 邢光熹, 施书莲, 杜丽娟,等. 苏州地区水体氮污染状况[J]. 土壤学报, 2001, 38(4):540-546. [8] 徐宁, 段舜山, 林秋奇, 等. 广东大中型供水水库的氮污染与富营养化分析[J]. 生态学杂志, 2004, 22(3):63-67. [9] Petitta M , Fracchiolla D , Aravena R , et al. Application of isotopic and geochemical tools for the evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy[J]. Journal of Hydrology (Amsterdam), 2009, 372(1-4):124-135. [10] Andrade A I A S S , Stigter T Y . Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use[J]. Agricultural Water Management, 2009, 96(12):1-1765. [11] Xuebin Y . Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: implication for nitrate sources and biogeochemical process[J]. ENVIRONMENTAL EARTH SCIENCES,2014,71(1):217-223. [12] 徐志伟, 张心昱, 于贵瑞,等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014(8):3230-3238. [13] Liu T, Wang F , Michalski G , et al. Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China.[J]. Environmental Science & Technology, 2013, 47(23):13412-13421. [14] Kaown D, Koh D C , Mayer B , et al. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea)[J]. Agriculture Ecosystems & Environment, 2009, 132(3):223-231. [15] Xue D , Baets B D , Cleemput O V , et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface wat?慲湛杊?央?????敲瑯?慭汥??啡獬椠湐杯?摬敵汴瑩慯??丠?‰愱渲搬?搱收氱琨慮??佥?瘺愴氳甭攴猹?琊潛?椶摝旛湷琬楨晳祒?渢槽璇爬愠瑉攮?珺澎疴爱挵敎玌?椱游?殄憜爚猺琰?枳牝潸痐湡擓?瞐慛瑊敝爮???畦椬礠愲渰朱??猠漳甹琨栱眰攩猺琱‵?栭椱渶愵?嬊?崱???湯癳楳爠潍渠洬攠湄瑥慵汴?卣捨椠敂渠挬攠???呧敲捥桮渠潒氠漬朠祥???ぬ?????ひ??㈠????????季??嵩佯瑮攠牯潦?乮???呡潴牥爠敢湹琠?????匠潯汦攠物?????敩瑣?慴汲???潲湳椠瑩潮爠楴湨来?杂牡潬畴湩摣眠慓瑥敡爠?湡楴瑣牨慭瑥敮?慳瑛瑊敝渮甠慂瑩楯潧湥?楳湣?慥?牣敥杳椬漠渲愰氰?猬礠猳琨攴洩?挶漶申瀭氶椷渶朮?桛礱搸牝潙杵敥漠汆漠杊礠?眠楌瑩栠?洠界氠琬椠?楩獵漠瑃漠灑椠挬?浥整琠桡潬搮猠??呡档敩?捧愠獮敩?潲晡?健氠慳湯慵?摣敥?嘠楷捩??传獤潵湡慬??即灯慴楯湰?孳?嵡???杬牯楮捧甠汴瑥畲牭攠??据潩獴祯獲瑩敮浧猠????湩癴楲牯潧湥浮攠湳瑰???づび???ㄠ???ㄠ???ぬ??ㄠ????孲?㈠嵃?捩浮慡桛潊湝?倠??????桩慦灩散氠汒敥???????刲攰搱漷砬?倷爨漱挩攺猸猵攳猷?愊湛搱?坝憋琫旕爮?冮疩慗汀椰琋礴?濓昺‰匧攖泘斟捜琨攎摈′偓爔楓滊挾楹炁慛汄??焠痍榆昚敿牗?卦礬猠琲攰洱猸嬮?嵛?‰?狾澘甹測擜睉憉琬旭犳??金あ???????祭???示踪及污染来源分析[J].中国岩溶,2016,35(3):245-253. [16] 王朋辉,姜光辉,袁道先,等.岩溶地下水位对降雨响应的时空变异特征及成因探讨:以广西桂林甑皮岩为例[J].水科学进展,2019,30(1):56-64. [17] Jiang, G, Guo, F&Wei, M. Hydrogeological characteris- tics of foot caves in a karst peak-forest plain in South China. Hydrogeol[J].2020,28, 535-548. [18] Hornberger G M. Isotope Tracers in Catchment Hydrology[J]. Eos Transactions American Geophysical Union, 1999, 80(23):260-260. [19] Xue D , Botte J , Baets B D , et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater[J]. Water Research, 2009, 43(5):1-1170. [20] Heaton T H E . Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review[J]. Chemical Geology (Isotope Geoscience Section), 1986, 59(none):87-102. [21] Durka W , Schulze E D , Gebauer G , et al. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements[J]. Nature (London), 1994, 372(6508):765-767. [22] BoTtcher J , Strebel O , Voerkelius S , et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3-4):1-424. [23] 王开然. 桂林东区峰林平原岩溶水系统氮的运移机理研究[D].重庆:西南大学,2013. [24] 任梦梦,黄芬,胡晓农,曹建华,张鹏.漓江流域碳氮同位素组成特征及其来源初探[J/OL].地球科学:1-24[2020-03-14].http://kns.cnki.net/kcms/detail/42.1874.p.20190819.16 07.014.html. [25] Liu C Q , Li S L ,
点击查看大图
计量
- 文章访问数: 1707
- HTML浏览量: 591
- PDF下载量: 202
- 被引次数: 0