Discussion on lining strength of railway tunnels in karst areas under instantaneous heavy rainfall: An example of the Yuanbaoshan tunnel of Zhijin-Bijie railway in Guizhou Province
-
摘要: 贵州是岩溶发育地区,强降雨对岩溶隧道衬砌破坏时有发生。贵州织毕铁路元宝山隧道通车前夕,瞬时强降雨致二衬多处发生挤出、跨塌、剥落、开裂、涌水、滴水等灾害,使织毕铁路开通计划被迫取消。本文借助MIDAS GTS数值模拟软件,计算并对比分析衬砌正常及施加50 m水压两种工况下,二衬位移量、轴力、弯矩及剪力情况,分析瞬时强降雨对铁路岩溶隧道衬砌强度的影响,主要结论如下:(1)在不考虑水压的情况下,二衬结构较为安全。当瞬时增加50 m水压时,因衬砌结构内力值过大,计算得出衬砌结构安全性已被破坏的结论;(2)对于地下水发育岩溶地段,若无水压的具体资料,建议III级围岩段采用钢筋混凝土衬砌,以增加衬砌对局部瞬时水压升高的抵抗能力;(3)泄水减压是解决水头上升水压过大致使衬砌破坏的关键。
-
关键词:
- 瞬时强降雨 /
- 岩溶隧道 /
- 衬砌强度 /
- MIDAS GTS软件
Abstract: Guizhou is a karst highly developed province, where heavy rainfall often destroys tunnel lining. A typical case is that on the eve of opening of the Yuanbaoshan tunnel of the Zhijin-Bijie railway in Guizhou, an instantaneous heavy rain caused many damages of second-time linings at many places in the tunnel, such as extrusion, collapse, spalling, cracking, water inrush, and dripping, resulting in the cancellation of the railway opening planned. This work attempts to analyze the mechanism of this hazard. In terms of MIDAG GTS numerical simulation software, we calculate the displacement, axial force, bending moment and shear stress of the second-time linings under normal conditions and 50 m water pressure on linings, respectively, and examine the effect of instantaneous heavy rainfall on the strength of lining. Results show that, (1) without considering the water pressure, the second lining structure is relatively safe. When the instantaneous increase of 50m water pressure is posed, the lining structure is not safe because of the excessive internal force. (2) For the karst sections with groundwater development, if there is no specific data of water pressure, it is recommended that in the third-grade surrounding rock section, reinforced concrete lining is used to increase the lining’s resistance to local instantaneous water pressure rising. (3) Discharge and decompression are the key measures to solve the problem that the lining is destroyed because of the excessive water pressure.-
Key words:
- instantaneous heavy rainfall /
- karst tunnel /
- lining strength /
- MIDAS GTS software
-
[1] 任美锷,刘振中.岩溶学概论[M]. 北京:商务印书馆,1983. [2] 赵明阶,刘绪华,敖建华等.隧道顶部岩溶对围岩稳定性影响的数值分析[J].岩土力学,2003,24(3):445-449. [3] 周雪铭,刘辉、彭川等.岩溶隧道开挖对溶洞处治结构影响的数值模拟分析[J].岩土力学,2011,32(1):269-275. [4] 宋战平,杨腾添,张丹锋等.溶洞对隧道稳定性影响的数值试验及现场监测分析[J].西安建筑科技大学学报(自然科学版),2014,46(4):484-491. [5] 赵岩杰. 重庆武隆隧道岩溶重点发育区溶蚀特征研究[D]. 长春:吉林大学,2018. [6] 杨正璇.岩溶区富水运营隧道衬砌病害发展成因分析[J]. 山西建, 2018,44(5):157-158. [7] 田珂.中坝岩溶隧道突水突泥施工处治技术研究[D]. 成都:西南交通大学,2018. [8] 许胜,李嘉雨,张会刚等.沪昆高铁朱砂堡隧道特大型岩溶稳定性模拟与评价[J]. 地质灾害与环境保护,2018,29(2):35-42. [9] Day M J.Karstic problems in the construction of Milwaukee’s Deep Tuuuels[J]. Environmental Geology,2004,45(6):859-863. [10] 张玉石,刘远明. 顶部溶洞对贵阳轨道交通隧道围岩变形及衬砌内力研究分析[J]. 中国水运,2019,2(26):72-74. [11] 彭奇,刘国峰,杨腾,等. 强降雨条件下岩溶地质环境因素对隧道安全性的影响序列研究[J].中国岩溶,2018,38(7):1150-1157. [12] 黄俊锋,谢涛,陈俊,等. 岩溶空腔对隧道稳定性的影响分析[J]. 施工技术,2018,47(14):25-28. [13] 尹洪亚.基于渗流场与应力场耦合模型的岩溶隧道衬砌可靠度研究[J]. 工程技术,2018,45(16):118-120. [14] 张彦龙,田卿燕,张建同.广东地区某公路岩溶隧道水害分析及其数值模拟研究[J].中国岩溶, 2018,37(2):307-313. [15] 张凯祥. 高水压条件下深埋公路隧道二衬结构安全性分析及其监测预警研究[D]. 重庆: 重庆交通大学,2018. [16] 庄旭峰,孙东.实例分析隧道建设对岩溶水的影响[J]. 中国岩溶,2016,35(6):681-687. [17] 贵州省织金县气象局发布的2016年《气象信息快报-第18期》. [18] 中铁二院工程集团有限公司.织毕铁路元宝山隧道勘察报告[R].2012. [19] 中铁二院工程集团有限公司.织毕铁路元宝山隧道水害段设计自查报告[R].2016. [20] 中国铁道出版社.铁路隧道设计规范[S].2016.
点击查看大图
计量
- 文章访问数: 2007
- HTML浏览量: 646
- PDF下载量: 362
- 被引次数: 0