Response characteristics of typical karst groundwater levels of central Shandong Province to precipitation and climatic index
-
摘要: 我国北方岩溶水资源是其经济社会发展的重要资源基础,表征水资源赋存特征的岩溶地下水位动态及其影响因素分析能够为岩溶水资源管理及合理开发利用提供重要支撑。本文选取鲁中地区3个典型水文地质单元,基于2010-2017年月值降水、地下水位及NPI气象指数数据,采用小波分析方法对上述指标的周期性、响应特征及遥相关特征进行了分析。结果表明:(1)各岩溶地下水位动态、降水与NPI的主波动周期均为1 a,其显著周期与分布时段等的异同是受自然条件和人类活动共同作用的结果。(2)各水文地质单元岩溶水位对降水的响应时滞为95.81~146.64 d,其差异主要源于观测站所处的地下水流系统的位置的不同。(3)NPI与降水存在一定的遥相关,与受降水影响的岩溶水位动态也存在遥相关。各岩溶水位对NPI的遥相关时滞为111.75~169.77 d,相比水位对降水时滞有所增加。鲁中岩溶地区地下水位对降水与NPI存在规律性的响应时滞,此种特征可为我国北方岩溶地下水位的预警预报提供帮助。Abstract: Karst water resources in northern China is an important resource basis for economic and social development of its distribution area. The analysis of the dynamics of karst groundwater levels and its influencing factors can provide important supports for the management and rational development and utilization of the karst water resources, which is of practical significance. In this paper, 3 typical hydrogeological units in central Shandong Province are selected as the study area, and based on monthly data of precipitation, groundwater levels and NPI climatic index from 2010 to 2017, the periodicities, response characteristics and teleconnections of the above indices are analyzed by wavelet analysis methods. The results show that: ①The main fluctuation periods of the karst groundwater level dynamics, precipitation and NPI are all 1a, and the similarities and differences of the significant periods and the distribution time are the results of the combination of natural conditions and human activities. ②The response time lags of karst water levels to precipitation in the hydrogeological units are 95.81~146.64 d, and the differences mainly originate from the different monitoring positions of the groundwater flow systems. ③There are teleconnections between NPI and Zibo precipitation, and there are also teleconnections between NPI and the karst groundwater dynamics, which are mainly affected by precipitation. The time delays of karst groundwater levels to NPI are 111.75~169.77d, which are a bit longer than the time delays of precipitation and the groundwater levels. Recognizing the regular response characteristics of the karst groundwater levels to precipitation and NPI can provide assistance for the early warning and prediction of karst groundwater levels in northern China.
-
Key words:
- groundwater level /
- precipitation /
- climatic index /
- periodicity /
- wavelet analysis
-
[1] 梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶,2013,32(1):34-42. [2] 朱党生, 张建永, 史晓新, 等. 城市饮用水水源地安全评价(Ⅱ):全国评价[J]. 水利学报,2010,41(8): 914-920. [3] 凤蔚, 祁晓凡, 李海涛, 等. 雄安新区地下水水位与降水及北太平洋指数的小波分析[J]. 水文地质工程地质,2017,44(6):1-8. [4] 祁晓凡,王雨山,杨丽芝,等.近50年济南岩溶泉域地下水位对降水响应的时滞差异[J]. 中国岩溶,2016,35(4):384-393. [5] 祁晓凡, 杨丽芝, 韩晔, 等. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978. [6] 祁晓凡, 李文鹏, 杨丽芝, 等. 济南白泉泉域地下水位动态对降水响应的年内时滞分析[J]. 地球与环境,2015,43(6):619-627. [7] 祁晓凡, 李文鹏, 李海涛, 等. 济南岩溶泉域地下水位、降水、气温与大尺度气象模式的遥相关[J]. 水文地质工程地质,2015,42(6):18-28. [8] Kuss A J M, Gurdak J J. Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO [J]. Journal of Hydrology, 2014, 519(B):1939-1952. [9] Tremblay L, Larocque M, Anctil F, et al. Teleconnections and interannual variability in Canadian groundwater levels [J]. Journal of Hydrology, 2011, 410(3-4): 178-188. [10] Luque-Espinar J A, Chica-Olmo M, Pardo-Iguzquiza E, et al. Influence of climatological cycles on hydraulic heads across a Spanish aquifer [J]. Journal of Hydrology, 2008, 354(1-4): 33-52. [11] 李文鹏, 郑跃军, 郝爱兵. 北京平原区地下水位预警初步研究[J]. 地学前缘, 2010,17(6):166-173. [12] 刘广义, 汪新芹, 武羽晓, 等. 山东省淄博市应急供水水源地调查研究报告[R]. 济南: 山东省地质工程勘察院, 2006. [13] World Meteorological Organization. Analyzing long time series of hydrological data with respect to climate variability [R]. Geneva: World Meteorological Organization, 1988. [14] 祁晓凡, 李文鹏, 李传生, 等. 济南岩溶泉域地下水位与降水的趋势性与持续性[J]. 灌溉排水学报,2015,34(11):98-104. [15] 迟光耀, 邢立亭, 侯新宇, 等. 基于小波分析与 Mann-Kendall法的岩溶大泉动态研究[J].中国岩溶,2018,37(4):515-526. [16] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. [17] Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5-6): 561-566. [18] 祁晓凡, 李文鹏, 李海涛, 等. 黑河流域气象要素与全球性大气环流特征量的多尺度遥相关分析[J]. 干旱区地理,2017,40(3):564-572. [19] 祁晓凡, 李文鹏, 李海涛,等. 中国干旱内陆河出山径流对流域气象要素与全球气象指数的响应特征研究[J]. 干旱区地理,2018,41(6):1184-1193. [20] 祁晓凡. 气候变化条件下干旱内流盆地水资源可持续利用研究[D]. 北京: 中国地质大学(北京), 2018. [21] Hanson R T, Newhouse M W, Dettinger M D. A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States [J]. Journal of Hydrology, 2004,287 (1), 252-269.
点击查看大图
计量
- 文章访问数: 2252
- HTML浏览量: 604
- PDF下载量: 508
- 被引次数: 0