Numerical simulation for the evolution of covered karst fissure system between rivers
-
摘要: 为揭示隐伏型岩溶含水系统在不同边界条件与介质特征下的发育状况,基于地下水渗流和碳酸盐岩溶蚀理论构建耦合裂隙网络渗流与碳酸盐岩溶蚀的岩溶裂隙网络溶蚀扩展模型,模拟再现了河间隐伏型岩溶含水系统平面上发育演化过程。结果显示:岩溶系统发育过程中流量变化呈现三个阶段:第Ⅰ阶段为缓慢层流阶段,流量增速为2.2×10 -6 mL·(s·a) -1,持续时间与初始水头差呈对数关系;第Ⅱ阶段为极快速紊流阶段,流量增速为5.5×10 2 mL·(s·a) -1,持续时间与初始水头差呈线性关系;第Ⅲ阶段为快速紊流阶段,流量增速为26 mL·(s·a) -1。优势裂隙的存在使得岩溶裂隙网络溶蚀演化加快,非均质系统进入极快速紊流阶段所用时间较均质系统缩短了53%,裂隙溶蚀扩展的速度加快了12.5%。Abstract: Initial media characteristics and boundary conditions of a karst system determine its evolution process. The purpose of this study is to reveal the development of a concealed karst aquifer system under different boundary conditions and medium characteristics. Based on groundwater seepage and carbonate dissolution theory, we construct a karst fissure network dissolution propagation model of coupled fracture network seepage and carbonate dissolution, and conduct simulation on the evolution process of the concealed karst aquifer system between rivers. The results show that the flow changes during the development of the karst system have three stages. The first stage is a slow laminar flow with a flow rate increase of 2.2×10 -6 mL·(s·a) -1, with a duration logarithmically related with the initial head difference. The second stage is a very fast turbulent with a flow rate increase of 5.5×10 2 mL·(s·a) -1, and the duration is linearly related with the initial head difference. Stage III is a fast turbulent with a flow rate increase of 26 mL·(s·a) -1. The existence of dominant cracks accelerates the dissolution of karst fracture network. The time for the heterogeneous system entering the extremely fast turbulence phase is 53% shorter than that of the homogeneous system, and the dissolution rate of cracks is accelerated by 12.5%.
-
Key words:
- concealed /
- crack network /
- hydraulic gradient /
- medium characteristics /
- numerical simulation
-
[1] 沈继方, 于青春, 万军伟. 碳酸盐岩岩溶化过程数值模拟[M]//袁道先等. 中国岩溶动力系统. 北京; 地质出版社. 2002: 100-108. [2] 薛亮, 于青春. 岩溶水系统演化中河间地块分水岭消失过程的数值模拟分析[J].水文地质工程地质, 2009,36(2): 7-12. [3] 王云, 于青春, 薛亮,等. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶,2010,29(4): 378-384. [4] Clemens T, Hükinghaus D, Sauter M, et al. A combined continuum and discretenetwork reactive transport model for the simulation of karst development [J]. IAHS PUBLICATION, 1996,237(1): 309-318. [5] Clemens T, Hückinghaus D, Sauter M, et al. Modelling the genesis of karst aquifer systems using a coupled reactive network model [J]. IAHS PUBLICATION, 1997,241(1): 3-10. [6] White W. Role of solution kinetics in the development of karst aquifers[J]. Karst hydrogeology International Association of Hydrogeologists, 12th Memoirs, 1977,12(1): 176-187. [7] Kaufmann G.Karst aquifer evolution in a changing water table environment[J].Water Resources Research, 2002, 38 (6) :26/1-26/9. [8] Kaufmann G.Modelling karst geomorphology on different time scales[J].Geomorphology, 2009, 106 (1-2) :62-77. [9] Yu Qingchun,Shen Jifang,Wan Junwei,et al.Some investigation on early organization of Karst system[J].Jounral of China University of Geosciences, 1999, 10(4):314-321. [10] 速宝玉, 詹美礼. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报, 1994(5):19-24. [11] 毛亮, 于青春, 王敬霞, 等. 降雨对裂隙型岩溶含水系统演化影响的数值模拟研究[J]. 中国岩溶, 2017, 36(1): 42-48. [12] 刘再华, Dreybrodt W.DBL理论模型及方解石溶解/沉积速率预报[J].中国岩溶, 1998, 17 (1) :1-7. [13] Plummer L N, Wigley T M L, Parkhurst D L.The kinetics of calcite dissolution in CO2-water systems at 5 ℃to 60 ℃and 0.0 to 1.0 atm CO2[J].American Journal of Science, 1978, 278 (2) :179-216. [14] Dreybrodt W.Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models[J].Water Resources Research, 1996, 32 (9) :2923-2935. [15] 武亚遵, 林云, 万军伟,等. 碳酸盐岩单裂隙渗流-溶蚀耦合模型及其参数敏感性分析[J]. 中国岩溶, 2016, 35(1):81-86. [16] 李茂秋.向斜盆地区域动力水流模型[J].中国岩溶,1985,4(3):33-41.
点击查看大图
计量
- 文章访问数: 2049
- HTML浏览量: 660
- PDF下载量: 664
- 被引次数: 0