Effect of moisture content and dry density on shear strength of Guilin red clay
-
摘要: 为研究含水率及干密度对桂林红黏土抗剪强度的影响机理,进行了一系列控制含水率、干密度的直剪试验,建立含水率及干密度与抗剪强度的函数关系式。试验结果表明:同一干密度条件下,粘聚力、内摩擦角随含水率的增大整体呈下降趋势;在含水率相同时,随干密度增大,粘聚力减小,内摩擦角增大。分析表明:随含水率增大,具有“水稳定”性的胶结作用减弱,引起粘聚力降低;土中结晶态氧化铁含量高于胶结态时,内摩擦角增大,反之则降低。干密度增大时,重塑土因胶结键断裂后短时间无法恢复,使土颗粒的有效胶结面积的减少程度大于其增多的程度,引起粘聚力下降;干密度的增大会改变红黏土的微观结构模型,土中封闭孔隙的增多会导致粘聚力下降;土样微观结构性随干密度的增大而增强,使内摩擦角增大。Abstract: This work studied the influence mechanism of water content and dry density on the shear strength of Guilin red clay. A series of direct shear tests to control water content and dry density were carried out and the relationship between water content and dry density and shear strength was established. The results show that under the same dry density condition, the cohesion and internal friction angles decrease with the increase of water content. When the water content is the same, the cohesion decreases with the dry density, while the internal friction angle increases. The analysis shows that with the increase of water content, the cementation with "water stability" is weakened, causing the cohesive force to decline; when the crystalline iron oxide content in the soil is higher than the cemented state, the internal friction angle increases, and vice versa. When the dry density becomes larger, the remolded soil cannot be recovered after breaking due to the cement bond, so that the effective cementation area of the soil particles is reduced more than the degree of increase, causing the cohesion to decrease. The growth of the dry density can change the microstructure model of the red clay, where the increase of closed pores of the soil leads to a decrease of cohesive force. The microstructure of the soil sample increases with the increasing dry density, resulting in an increase of the internal friction angle.
-
Key words:
- Guilin /
- red clay /
- shear strength /
- moisture content /
- dry density
-
[1] 顾展飞,刘琦,卢耀如,等.酸碱及可溶盐溶液对桂林红黏土压缩性影响实验研究[J].中国岩溶,2014,33(1):37-43. [2] 张添锋,孙德安,刘文捷.桂林压实红黏土抗剪强度与含水率关系[J].上海大学学报(自然科学版),2014,20(5):586-595. [3] 李景阳,朱立军,梁风,等. 碳酸盐岩残积红黏土微观结构的扫描电镜研究[J]. 中国岩溶,2002,21(4):233-312. [4] 周远忠,刘新荣,张梁,等. 红黏土微观结构模型及其工程力学效应分析[J]. 地下空间与工程学报.2012,8(4):726-731,835. [5] 赵颖文,孔令伟,郭爱国,等. 广西原状红黏土力学性状与水敏性特征[J]. 岩土力学,2003,24(4):568-572. [6] 李辉,刘顺青.重塑红黏土和粉状煤系土的水敏感性比较研究[J]. 山大学学报(自然科学版),2015,54(6):90-93. [7] 杨松,卢廷浩.非饱和红黏土的不排气、不排水三轴剪切试验研究[J].岩土力学,2011,32(增1):356-359. [8] 胡艳欣.红黏土含水量和干密度与抗剪强度的相关性分析[J].人民长江,2017,48(增1):249-252. [9] 赵蕊,左双英,王嵩,等.不同含水量贵阳重塑红黏土三轴抗剪强度试验研究[J].水文地质工程地质,2015(5): 90-95. [10] 傅鑫晖,颜荣涛,于海浩,等. 红黏土的强度机理[J].桂林理工大学学报,2014,34(4):691-696. [11] 刘顺青,洪宝宁,方庆军,等. 高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(1):78-83. [12] 李龙起,罗书学,姜红,等.非饱和红黏土土水特性及强度特征研究[J].西南交通大学学报,2014,49(3):393-398. [13] 杨庆,贺洁,栾茂田,等. 非饱和红黏土和膨胀土抗剪强度的比较研究[J].岩土力学,2003,24(1):13-16. [14] 王继庄.游离氧化铁对红黏土工程特性的影响[J]. 岩土工程学报,1983,5 (1) : 147-156. [15] 傅鑫晖,韦昌富,颜荣涛,等.非饱和红黏土的强度特性研究[J].岩土力学,2013,34(增2):204-209. [16] 吕海波,曾召田,尹国强,等.广西红黏土矿物成分分析[J].工程地质学报,2012,20(5):651-656.
点击查看大图
计量
- 文章访问数: 1637
- HTML浏览量: 555
- PDF下载量: 296
- 被引次数: 0