Effect of alternating wetting-drying on physiological features of water content and photosynthesis of Erythrodontium julaceum (Schwaegr.) Par. in karst habitat
-
摘要: 研究了石生穗枝赤齿藓对喀斯特环境变迁的水分及光合生理适应,为喀斯特石漠化生态环境的恢复与治理提供依据。选择贵州普定石漠化区域交织型石生穗枝赤齿藓(Erythrodontium julaceum (Schwaegr.) Par.)为材料,测定水分和光合生理等指标。结果表明:干旱胁迫下石生穗枝赤齿藓水势(Ψs)、自由水含量(Va)、组织总含水量和相对含水量(RWC)降低,束缚水(Vs)、水分饱和亏(WSD)和Vs/Va比值增大,复水后各水分生理指标均有不同程度的恢复。RWC与qN负相关,与Fv/Fm、Yield、ETR、qP、Pn呈正相关关系;叶绿素含量总体呈出先升后降再升高的趋势。轻度干旱胁迫Pn逐渐下降,重度急剧下降,光合作用受到了严重的影响;随干旱胁迫进程蒸腾速率(Tr)的变化未见显著差异。复水后各荧光参数在轻中度胁迫下能恢复到正常水平,而重度胁迫较难恢复到对照水平。喀斯特石生穗枝赤齿藓具有适应岩溶干湿交替的水分代谢和光合生理机制,是石漠化地区植被恢复与重建过程中的先锋物种。Abstract: This study presents a theoretical foundation for recovering and controlling the environments of rocky desertification ecology. It relies on comparing the adaptability to habitat heterogeneity in karst rocky desertification areas with arid desert of karst and seasonal drought environments and analysis of moisture content and photosynthetic physiological adaptation. Taking E. julaceum growth on rock as the object, water content and photosynthetic physiological indexes are measured in the Puding City, Guizhou Province. The results show that the drought makes water potential(Ψs), free water content(Va), water content and relative water content(RWC) of E. julaceum decrease, bound water content(Vs), water saturation deficiency(WSD) and ratio of bound water content to free water content(Vs/Va) increase, leaf water-holding ability weakened, and transpiration rate(Tr) decreased. The response sensitivities of these indices to water’s action are different. With increase of drought, total chlorophyll content first rises and then drops, finally tends to increase. qN of three kinds of mosses is negatively correlated while Fv/Fm, Yield, ETR Pn and qP decline with drought are positively correlated. The Pn gradually declines in mild drought dehydration. After 48 h Pn falls sharply, photosynthesis is affected by the serious drought. Along with the process of drought, changes of transpiration rate (Tr) have no significant differences between species. Fluorescence parameters after re watering can be restored to normal levels in mild to moderate force, and severe force is more difficult to return to the control level. The epilithic mosses has strong drought resistance ability, water metabolism and photosynthetic physiological mechanism to adapt to the karst environment, indicating a pioneer species in the process of vegetation restoration and reconstruction in the karst rocky desertification areas.
-
[1] 吴玉环,程佳强,冯虎元,等.耐旱藓类的抗旱生理及其机理研究[J].中国沙漠,2004,24(1):23-29. [2] 容丽,王世杰,俞国松,等.荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J].林业科学,2012,48(7):14-22. [3] Vitt D H. Patterns of growth of the drought tolerant moss, Racomitrium microcarpon, over a three year period[J]. Lindbergia, 1989,15(6):181-187. [4] Oechel W C, Lawrence W T. Physiological ecology of North American plant communities[A]. In: Chabot B Fand Mooney H A eds. Taiga. New York: Chapman and Hall, 1985: 66-94. [5] Santarius K A. Apoplasmic water fractions and osmotic potentials at full turgidity of some Bryidae[J]. Planta, 1994, 193(1):32-37. [6] Beckett R P. Pressure volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells[J].Annals of Botany,1997,79:145-152. [7] Proctor M C F, Nagy Z, Cstinalan Z S, et al. Water-content components in bryophytes: physiological and ecological cells[J]. J. Experimental Botany,1998,49:1845-1854. [8] Proctor M C F. Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry[J]. J. Bryology, 1999,21:263-270. [9] Csintalan Z, Proctor M C F, Tuba Z. Chlorophyll Fluorescence during Drying and Rehydration in the Mosses Rhytidiadelphus loreus(Hedw.) Warnst., Anomodon viticulosus(Hedw. ) Hook. & Tayl. and Grimmia pulvinata(Hedw. ) [J]. Sm. Ann. Bot., 1999, 84: 235-244. [10] Seel W E, Baker N R, Lee J A. Analysis of the decrease in photosynthesis on desiccation of mosses from xeric and hydric environments[J]. Physiol. Plant., 1992, 86: 451-458. [11] Deltoro V I, Angeles C, Gimenol C, et al. Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts[J]. Planta, 1998,207:224-228. [12] Marschall M, Proctor M C F. Desiccation tolerance and recovery of the leaf liverwort Porella platyphylla(L.) Pfeiff: chlorophyll fluorescence measurements[J]. J. Bryol., 1999, 21(4): 257-262. [13] Csintalan Z, Takacs Z, Mcf P, et al. Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland[J]. Plant Ecology, 2000, 151(1):51-54. [14] 衣艳君,刘家尧.毛尖紫萼藓(Grimmia pilifera P. Beauv) PSII光化学效率对脱水和复水的响应[J].生态学报, 2007,27(12):5238-5244. [15] 唐益群,张晓晖,周洁,等.喀斯特石漠化地区土壤地下漏失的机理研究:以贵州普定县陈旗小流域为例[J].中国岩溶,2010,29(2):121-127. [16] 张显强,李超,王世杰,等.喀斯特石生穗枝赤齿藓抗氧化防御系统对干旱胁迫的响应[J].广西植物,2015,35(2):200-205. [17] 张志良.植物生理学实验指导(第四版)[M].北京:高等教育出版社,2009. [18] 刘向莉,高丽红,刘明池.植物组织中自由水和束缚水含量测定方法的改进[J].中国蔬菜,2005,1(4):9-11. [19] 包维楷,冷俐.苔藓植物光合色素含量测定方法:以暖地大叶藓为例[J].应用与环境生物学报, 2005,11(2): 235-237. [20] 张显强,王世杰,孙 敏.干旱和复水对喀斯特石生反叶扭口藓(Barbula fallax Hedw.)叶绿素荧光特性的影响:以贵阳市花溪区附近严重石漠化区域为例[J].中国岩溶,2014,33(1):77-81. [21] 荆家海.植物生理学[M].西安:陕西科学技术出版社,1994:29-112. [22] 何纪星,朱守谦,祝小科. 喀斯特森林树种水分生态初步研究?喀斯特森林生态研究(I)[M].贵阳:贵州科技出版社,1993:63-73. [23] 何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11): 2226-2233. [24] Gray G R, Chauvin L P, Sarhan F, et al. Cold acclimation and freezing tolerance: A complex interaction of light and temperature[J]. Plant Physiology, 1997,114: 464-474. [25] 许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28 (4): 237-243. [26] Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves[J]. Physiologia Plantarum, 1992, 86:180-187. [27] Enserink M. Biological Invaders Sweep In[J]. Science, 1999, 285(5435):1834-1836. [28] Maxwell K, Johnson G N. Chlorophyll fluorescence a practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668 [29] Sobrado M A. Relation of water transport to leaf gas exchange properties in three mangrove species[J]. Trees, 2000, 14: 258-262. [30] Richards R A, Rebetzke G J, Condon A G, van Herw aarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J]. Crop Science, 2002,42: 111-121. [31] Ehdaie B, Hall A E, Farquhar G D, Nguyen H T, Waines J G. Water use efficiency and carbon isotope discrimination in wheat[J]. Crop Science,1991,31: 1282-1288. [32] 邓艳,蒋忠诚,罗为群,等.不同岩溶干旱胁迫下青冈栎水分生理对比研究[J].农业现代化研究,2006,27(3):238-240. [33] 符亚儒.沙区几种防护树种水分特性及抗旱特点的探讨[J].陕西林业科技,1998(3):42-44. [34] Michal K. On the relation between the non-photochemical quenching of chlorophyll fluorescence and photosystem I light harvesting efficiency a repetitive flash fluorescence induction study[J]. Photosynthesis Research, 2001, 68: 571-576. [35] Stalfelt M G. Der Gasaustauch der Moose[J]. Planta, 1937, 27:30-60. [36] Dilks T J K & Proctor M C F. Photosynthesis, respiration and water content in bryophytes[J]. New Phytol, 1979,82:97-114. [37] 刘应迪.中国五倍子蚜虫冬寄主藓类植物的生理生态学研究[D].沈阳:中国科学院沈阳应用生态研究所, 2001:1-157. [38] Li Y, Glime J M, Liao C. Responses of two interacting Sphagnum unbricatum spesies to water level[J]. J. Bryol., 1992,17:59-70. [39] Bewley J D. Physiological aspects of desiccation tolerance[J]. Ann. Rev. Plant Physiol., 1979, 30: 195-238.
点击查看大图
计量
- 文章访问数: 1643
- HTML浏览量: 585
- PDF下载量: 748
- 被引次数: 0