Chemical characteristics and environmental significance of SO42- and sulfur isotope in the karst watershed of the Niangziguan spring,Shanxi Province
-
摘要: 在分析区域地质、水文地质条件及水化学同位素的基础上,研究了山西娘子关泉域岩溶水的SO42-、硫同位素分布特征。研究表明:(1)泉域西北、西南地区岩溶水的SO42-主要来源于石膏的溶解;(2)泉域中部汇流区岩溶水的SO42-含量高而δ34S值低,其中的SO42-主要来源于煤系矿坑水,这是因为温河、桃河及南川河沿岸的岩溶水接受了被矿坑水污染的河水的渗漏补给以及部分地区受到钻孔串层污染;(3)娘子关泉群中城西泉水中的SO42-主要来源于煤系矿坑水,而五龙泉和集泉站水中的SO42-主要来源于石膏的溶解;(4)泉域东北部及东部河流沿岸以外的地区,岩溶水中的SO42-主要来源于大气降水、石膏溶解,并受到所处地层岩性的影响。Abstract: The Niangziguan spring watershed is located in the hinterland of the Taihang mountains, eastern Shanxi Province, with an area of 7,217 km2. The middle Ordovician limestone dominates its aquifer group, and the lower Ordovician is the aquifer floor of the aquifer system in most areas except the drainage area and part of the recharge area. The middle-upper Cambrian aquifer formation is mainly located in the eastern and northeastern margins of the spring watershed. The karst groundwater in the spring area is supplied by the recharge of atmospheric precipitation infiltration and river leakage, and the Niangziguan spring and karst water exploitation are the discharge sites. The karst groundwater in Niangziguan spring is the primary source of water supply in Yangquan City, which accounts for more than 70% of the total water intake in the city. In recent years, the total hardness and sulfate radical of karst groundwater in this spring area have increased, and the water quality has been deteriorating. Therefore, it is very important to clarify the characteristics and sources of sulfate in karst groundwater of the spring area. On the basis of previous studies, this work tests and analyzes the chemical composition and sulfur isotope of karst water in the Niangziguan spring area were tested and analyzed, and studies the influencing factors of hydrochemical characteristics and the source of sulfate in karst water to provide scientific basis for the development and protection of karst water. The research shows that, (1) SO42- of karst water in the northwest and southwest of the watershed is mainly derived from the dissolution of gypsum. (2) The karst water near the Wenhe /Taohe /Nanchuanhe rivers of the central confluence area is recharged by the river water which is polluted by the mine pit water, or polluted by the drilling string in some areas. In the karst water, SO42- mainly comes from the coal mine water. (3) The SO42- in the Chengxi spring is mainly derived from coal mine water, while SO42- of the Wulong spring and Jiquan spring is mainly derived from the gypsum dissolution. (4) In the northeast of the spring and the east of the river, SO42- comes from meteoric precipitation and gypsum dissolution, and is also affected by stratum lithology.
-
Key words:
- hydrochemical characteristics /
- sulfur isotope /
- karst water /
- Niangziguan spring area
-
[1] 孔志岗, 吴越, 张锋,等. 川滇黔地区典型铅锌矿床成矿物质来源分析:来自S-Pb同位素证据[J].地学前缘, 2018,25(1):125-137. [2] 章勇, 罗建镖, 孔华, 等. 湘南宝山铅锌银矿床硫同位素的地球化学特征及地质意义[J]. 地质与勘探, 2018,54(1):82-89. [3] 李壮, 王立强, 李海峰, 等. 西藏浦桑果铜铅锌多金属矿床S、Pb同位素组成及对成矿物 质来源的示踪[J]. 现代地质, 2018,32(1):56-65. [4] 朱路艳, 苏文超, 沈能平, 等. 黔西北地区铅锌矿床流体包裹体与硫同位素地球化学研 究[J]. 岩石学报, 2016,32(11):3431-3440. [5] Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1986,16(1):491-559. [6] A T Walker , K A Evans , C L Kirkland , et al.Tracking mineralisation with in situ multiple sulphur isotopes: a case study from the Fraser Zone, Western Australia[J]. Precambrian Research,2019,332:105379. [7] Dengfeng Li, Huayong Chen, Xiaoming Sun, et al. Coupled trace element and SIMS sulfur isotope geochemistry of sedimentary pyrite: Implications on pyrite growth of Caixiashan Pb-Zn deposit[J]. Geoscience Frontiers,2019,10(6):2177-2188. [8] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学,2018,29(2):159-167. [9] 洪业汤, 张鸿斌, 朱詠煊, 等. 中国大气降水的硫同位素组成特征[J]. 自然科学进展,1994,4(6):741-745. [10] 石磊, 郭照冰, 姜文娟, 等. 南京地区大气PM2.5潜在污染源硫碳同位素组成特征[J].环 境科学, 2016,37(1):22-27. [11] 韩珣, 任杰, 陈善莉, 等. 基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径[J]. 环境科学, 2018,39(5):2010-2014. [12] 李瑞, 肖琼, 刘文, 等. 运用硫同位素、氮氧同位素示踪里湖地下河硫酸盐、硝酸盐来源[J]. 环境科学, 2015, 36(8):2877-2886. [13] 李小倩, 刘运德, 周爱国,等. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J]. 地球科学(中国地质大学学报), 2014, 39(11): 1647-1654,1692. [14] 张东, 黄兴宇,李成杰. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J].水科学进展,2013, 24(3): 418-426. [15] 蒋颖魁, 刘丛强, 陶发祥. 贵州乌江水系河水硫同位素组成特征研究[J]. 水科学进展,2007,18(4): 558-565. [16] 洪业汤, 顾爱良, 王宏卫, 等. 黄河硫同位素组成与青藏高原隆起[J]. 第四纪研究,1995(4):360-366. [17] 臧红飞, 郑秀清, 张永波, 等. 柳林泉域岩溶水中SO〖_4^(2-)〗的来源探讨[J]. 水文地质工程地质, 2017,44(1):9-15. [18] 李小倩, 张彬, 周爱国, 等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水 文地质工程地质, 2014,41(6):103-109. [19] 霍建光, 赵春红, 梁永平,等. 娘子关泉域径流-排泄区岩溶水污染特征及成因分析[J]. 地质科技情报, 2015, 34(5): 147-152. [20] 张之淦. 应用硫同位素方法研究天然水中SO〖_4^(2-)〗离子起源一例.见:中国矿物岩石地球化学学会同位素专业委员会编[C].全国同位素地球化学学术讨论会(摘要汇编),1986:316. [21] Jianwei Zhou, Qiuxia Zhang, Fengxin Kang, et al. Using multi-isotopes (34S, 18O, 2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province[J]. International Biodeterioration & Biodegradation, 2018,128: 48-55. [22] 梁永平, 赵春红, 唐春雷, 等. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶,2017,36(5):633-640. [23] 梁永平,王维泰,赵春红,等.中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶,2013,32(1):34-42. [24] 中国地质科学院岩溶地质研究所,娘子关泉域管理处. 娘子关泉域岩溶地下水资源评价报告[R].2004. [25] 梁永平,赵春红,王桃良,等.娘子关泉域(阳泉市范围)岩溶水污染调查评价及保护对策[R].2015. [26] 袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29(3):355-365. [27] 黄奇波,覃小群,刘朋雨,等.汾阳地区不同类型地下水SO〖_4^(2-)〗、δ34S的特征及影响因素[J].第 四纪研究, 2014,34(2): 364-371.
点击查看大图
计量
- 文章访问数: 2101
- HTML浏览量: 700
- PDF下载量: 429
- 被引次数: 0