Formation characteristics of carbonate thermal water controlled by fault in southeastern Chongqing
-
摘要: 通过水化学法和同位素示踪法对渝东南断裂型碳酸盐岩地热水的地球化学特征及其水资源的形成进行研究。结果表明:郁山断裂以西地热水的水化学类型为Cl-Na型,断裂以东地热水以SO4-Ca?Mg型为主。根据Gibbs图,郁山断裂以西、以东的地热水分别受到蒸发浓缩和岩石风化作用的影响;断裂以西地热水的γNa+/γCl-接近1,表明地热水中高浓度的Cl-和Na+主要是源于地层中岩盐的溶解;断裂以东地热水的γ(Ca2++Mg2+)/γ(HCO_3^-+ SO〖_4^(2-)〗)接近1,表明地热水中高浓度的Ca2+和SO〖_4^(2-)〗主要来源于地层中膏岩的溶解。地热水的δD和δ18O值分别为-64.7‰~-50‰和-9.17‰~-7.89‰,分布在当地大气降水线两侧,表明补给来源主要为大气降水。地热水水源平均补给高程为1 278 m,这很可能来自附近岩溶中山地区。其热储温度为41~90 ℃,平均热储温度为66℃;循环深度为1 000~3 500 m,平均值为2 300 m。大气降水到达地表后,在重力(地形)作用下向深部径流,接受地球内部的热传导形成地热水,由西北向东南流动,沿着断裂带上涌,并接受冷水的混入。Abstract: Southeast Chongqing is located in the mountain region at the edge of the basin between Wuling mountain and Dalou mountain. Municipally, it falls within two districts and four counties of Chongqing, which are Qianjiang District and Wu Long district, the Shizhu county, the Xiushan county, the Youyang county and the Pengshui county. Paleozoic and Mesozoic sedimentary rocks widely distribute in the area, with lithology dominated by carbonate and clastic rock types. A number of synclines and anticlines expose in a parallel manner in the area where develop many faults. The thermal reservoir studied is mainly composed of dolomites and limestones of the upper & middle Cambrian and the lower Ordovician. It’s overlaid by the stratum layers comprise the upper & middle Ordovician and the lower & middle Silurian, their lithologies are mainly shale, silt stone and inclusion limestone. Below the thermal reservoir is the layer of aquiclude consisting of Gaotai formation of the middle Cambrian, with its lithology dominated by shales. The geochemical characteristics and the formation of the fault-controlled thermal water in carbonate rocks in southeastern Chongqing City were investigated by using the methods of hydrochemistry and isotopic tracer.The result of Gibbs diagram shows that the geochemical characteristics of thermal water in the west and east of the Yushan fault region are affected by evaporation and rock weathering, respectively. The hydrochemical type of the water in the west of Yushan fault region is Cl-Na. Ratio of gNa+/gCl- is close to 1, indicating that high Cl- and Na+ concentrations of the thermal water are mainly dominated by the dissolution of halite in the stratum. The hydrochemical facies of the thermal water of east Yushan fault are SO4-Ca?Mg. Ratio of g(Ca2++Mg2+)/g(HCO〖_3^-〗+ SO〖_4^(2-)〗) of the thermal water is nearly equivalent to 1, indicating that the high Ca2+ and SO〖_4^(2-)〗 concentrations in thermal water are derived from the dissolution of the anhydrite. The δD and δ18O values of the thermal water range from -64.7‰ to -50‰ and from-9.17‰ to -7.89‰, respectively, falling around the local atmospheric precipitation line, which indicates that the recharging source is mainly atmospheric precipitation. The average recharge elevation of thermal water source is 1,278 m, which is likely to come from the recharge nearby karst middle-mountain. The thermal reservoir temperature is from 41℃ to 90 ℃ with an average value of 66 ℃. The circulation depth is in the range of 1,000-3,500 m with an average value of 2,300 m. After the atmospheric precipitation infiltration, it flows into ground under the effect of gravity (topography) and follows with the heat conduction into the upper earth. The thermal water flows from the northwest to the southeast along the fault zone, and is mixed with shallow karst groundwater.
-
[1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015: 257-268. [2] Fu C C, Li X Q, Ma J F. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin[J]. Applied Geochemistry, 2018, 98: 82-93. [3] Qin X L, Wang Y, Wang Z Z,et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southrn China[J]. Journal of hydrology, 2018, 567: 339-350. [4] 肖琼, 杨雷, 蒲俊兵, 等. 重庆温塘峡背斜地表水-地下水-浅层地热水中硫同位素的环境指示意义研究[J]. 地质学报, 2016, 90(8): 1945-1954. [5] Silva P S, Campos J E G, Cunha L S, et al. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco, Brazil[J]. REM-International Engineering Journal, 2018, 71(1): 19-25. [6] Oyuntsetseg D, Ganchimeg D, Minjigmaa A, et al. Isotopic and chemical studies of hot and cold springs in western part of Khangai Mountain region, Mongolia, for geothermal exploration[J]. Geothermics, 2015, 53: 488-497. [7] Pastorelli S, Marini L, Hunziker J. Chemistry , isotope values (δD, δ18O, δ34S-SO4) and temperatures of the water inows in two Gotthardtunnels, Swiss Alps[J]. Applied Geochemistry, 2001, 16(7): 633-649. [8] Awaleh M O, Hoch F B, Boschetti T, et al. The geothermal resources of the Republic of Djibouti — II: Geochemical study of the Lake Abhe geothermal field[J]. Journal of Geochemical Exploration, 2015, 159: 129-147. [9] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1): 41-50. [10] Truesdell A H, Hulston J R. Isotopic evidence of environments of geothermal systems. Chapter 5[M] // Fritz P, Fontes J Ch. Handbook of Environmental Isotope Geochemistry. Amsterdan: Elsevier, 1980: 195-207. [11] 陈墨香. 中国地热资源:形成特点和潜力评估[M]. 北京: 科学出版社, 1994: 165-175. [12] Goldscheider N, Madl-Szonyi J, Eross A, et al. Review: Thermal water resources in carbonate rock aquifers[J]. Hydrogeology Journal, 2010, 18(6): 1303-1318. [13] Kong Y, Pang Z, Shao H, et al. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2014, 2(19): 1-19. [14] Yang P H, Cheng Q, Xie S Y, et al. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China[J]. Journal of Hydrology, 2017, 549: 50-61. [15] Xiao Q, Jiang Y J, Shen L C, et al. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance[J]. Applied Geochemistry, 2018, 89: 49-58. [16] Qin D J, Pang Z H, Turner J V, et al. Isotopes of geothermal water in Xi'an area and implications on its relation to karstic groundwater in North Mountains[J]. Acta Petrologica Sinica, 2005, 21(5): 1489-1500. [17] Pang J M, Pang Z H, Lv M,et al. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences,2018, 77(1): 12. [18] Wang S F, Pang Z H, Liu J R, et al. Origin and evolution characteristics of geothermal water in the niutuozhen geothermal field, North China Plain[J]. Journal of Earth Science, 2013, 24(6): 891-902. [19] 王贵玲, 刘志明, 蔺文静, 等. 中国地热资源潜力评估[A]. 第十三届中国科协年会第十四分会场:地热能开发利用与低碳经济研讨会[C], 天津, 2011, 12: 14-25. [20] 本元风清. 重庆市各区县面积[EB/OL]. https://wenku.baidu.com/view/d07e19f0f61fb7360b4c65bb.html. 2012, 2012-02-03/2019-03-23. [21] 重庆市气象局. 重庆市气候公报[R], 2017, 2018-1-17/2018-6-29. [22] 百草园7. 重庆各区县GDP及人均排名[EB/OL]. http://www.360doc.com/content/18/0410/08/41563207_744357587.shtml. 2018, 2018-04-10/2018-09-28. [23] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011, 6: 120-473. [24] Rybach L, Muffler L J P. Geothermal systems principles and case histories. Translated by geothermal research of department of geology, Peking University[M]. Geological Pubishing House:Beijing, 1986: 19-104. [25] Reed M H, Spycher N. Calculation of pH and mineral equilibria in hydrothermal water with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1479-1492. [26] Giggenbach W F. G?摴汨?卲穭?湬礠楳????呥?瑥桱??????慩獡椠湤?獲捩慶污整?捯潮渠捯敦瀠瑎畡愭汋?杍牧漭畃湡搠睧慥瑯敩牮?晩汣潡睴?浲潳摛敊汝?映潇牥?慣湨?畭湩捣潡渠晥楴渠散摯?慭湯摣?捩潭湩晣楡渠敁摣?瑡栬椠挱欹?挸愬爠戵漲渨愱琲攩?爠攲朷椴漹渭嬲?崶???祛搲爷潝杆敯潵汩潬杬祡??潃甬爠湍慩汣???つㄠ??????????????????ち??o in water applied to geothermometry of geothermal reservoirs[J]. Geothermics, 1981, 10(1): 55-70. [27] Fournier R O, TRUESDELL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. [28] 徐辉. 使用地层温度评价油气的分布和聚集[J]. 国外油气勘探, 1984 (2): 58-62. [29] Sorey M L, Colvard E M. Hydrologic investigations in the Mammoth Corridor, Yellostone National Park and Vicinity, U.S.A[J]. Geothermics, 1997, 26(2): 221-249. [30] 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J].地学前缘, 2016, 23(2): 260-268. [31] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(23): 1088-1090. [32] Lakshmanan E, Kanan R, Kumar M S. Major ion chemistry and identification of hydro-geochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India[J]. Environmental Geosciences, 2003, 10(4): 157-166. [33] 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44 (1): 11-18. [34] Umar R, Absar A. Chemical characteristics of groundwater in parts of the Gambhir River Basin, Bharatpur district, Rajasthan, India[J]. Environmental Geology, 2003, 44(5): 535-544. [35] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 87-89. [36] 李廷勇, 李红春, 沈川洲, 等. 2006~2008年重庆大气降水δD和δ18O特征初步分析[J]. 水科学进展, 2010, 21(6): 757-764. [37] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703. [38] Fournier R O. A method of calculating quartz solubilities in aqueous sodium chloride solutions[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 579-586. [39] Yang P H ,Luo D,Hong A H,et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes[J]. Journal of hydrology, 2019, 579. [40] Tóth J. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Reaearch[J]. 1963, 68(16): 4795-4812.
点击查看大图
计量
- 文章访问数: 1812
- HTML浏览量: 600
- PDF下载量: 435
- 被引次数: 0