Mechanical properties of microorganism solidified red clay immobilized by activated carbon in Guiyang
-
摘要: 微生物能够固化土体,但是在固化强度上还有待提高。为了增强微生物固化土体的力学特性,文章提出固定化微生物技术与微生物诱导碳酸钙沉淀技术(MICP)相结合的方法,即将掺量为0、4%、7%、10%、15%的活性炭与重塑红黏土均匀混合后,再通过MICP固化土体后进行常规三轴压缩试验,同时进行相同条件下在菌液瓶中有无胶结液与活性炭的生成碳酸钙的对比试验、有无活性炭重塑红黏土的常规三轴压缩对比试验。通过扫描电镜分析,得到试样的力学特性、活性炭在MICP过程中的作用、微观结构等试验结果。试验结果表明:在微生物固化土体过程中,活性炭作为固定微生物的载体,在MICP过程中对微生物起到“增效”的作用,在微生物诱导碳酸钙沉淀过程中提高了碳酸钙产量;同时,活性炭的有无及含量多少对微生物固化土体有重要影响,结合水膜厚度改变、碳酸钙填充孔隙及胶结作用使得红黏土抗剪强度有效C值大幅增加,有效φ值减小,剪应力峰值增加;加入活性炭使生物矿化环境得到优化,并在碳酸钙结晶时对晶体结构、形态产生了一定的控制作用,生成了以活性炭为“核心”具有一定结构的块体,而使土体的力学特性增强。该研究成果对微生物岩土技术以及工程应用具有重要价值。Abstract: Although microorganisms can solidify soil, its consolidation strength needs to be enhanced further. This work proposed a combination of immobilized microbial technology and microbial induced calcium carbonate precipitation technology (MICP). In this method, about 0, 4%, 7%, 10%, 15% of activated carbon is uniformly mixed with the remolded red clay, and the soil is solidified by MICP, then conventional triaxial compression tests are performed on soil samples. At the same time, comparison tests of generating calcium carbonate in the liquid bottle with or without the cement solution under the same conditions are carried out. By means of scanning electron microscopy analysis, the mechanical properties of the sample, the role of activated carbon in the MICP process, and the microstructure are obtained. The test results show that in the process of microbial solidification of soil, activated carbon acts as a carrier for immobilized microorganisms, which plays a role of the “enhancing effect” on microorganisms during the MICP process, and increases calcium carbonate production during microbial induced calcium carbonate precipitation. The presence or absence and content of the soil have an important influence on the microbial solidified soil. Combined with the change of water film thickness, filling of pores and cementation by calcium carbonate, the effective C value of the shear strength of red clay is greatly increased, the effective φ value is reduced, and the peak shear stress is increased. These changes demonstrate that adding activated carbon can optimize the biomineralization environment, and pose a certain control effect on the crystal structure and morphology during crystallization. Consequently, a block with a certain structure with activated carbon as the "core" is formed, and the mechanical properties of the soil are enhanced. This research would be valuable for future microbial geotechnical technology and engineering applications.
-
Key words:
- microbial solidification /
- MICP /
- red clay /
- activated carbon /
- mechanical properties
-
[1] Montoya B M, Dejong J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J].Geotech Geoenviron. Eng.,2015,141(6):1-10 [2] Shashank B S, Sharma S, Sowmya S,et al.State-of-the-art on geotechnical engineering perspective on bio-mediated processes[J]. Environ Earth Sci.,2016,75(3): 270-286. [3] Feng K, Montoya B M.Quantifying level of microbial-induced cementation for cyclically loaded sand[J].Geotech. Geoenviron Eng.,2017,143(6):1-4. [4] 刘汉龙,肖鹏,肖杨,等.微生物岩土技术及其应用研究新进展[J].土木与环境工程学报(中英文),2019,41(1):1-14. [5] Dejong J T, Fritzges M B, Nüsslein K.Microbially induced cementation to control sand response to undrained shear[J].Geotech. Geoenviron. Eng.,2006,132(11):1381-1392 . [6] Dejong J T, Mortensen B M, Martinez B C, et al.Bio-mediated soil improvement[J]. Ecol. Eng.,2010,36(2):197-210 . [7] Al Qabany A, Soga K, Santamarina C.Factors a?ecting efciency of microbially induced calcite precipitation[J]. J. Geotech. Geoenviron. Eng.,2012,138(8):992-1001. [8] 黄磊,杨永强,李金洪.生物矿化研究现状和展望[J].地质与资源,2009,18(4):317-320,297. [9] 张刚生,谢先德.CaCO3生物矿化的研究进展:有机质的控制作用[J].地球科学进展,2000(2):204-209. [10] Whiffin V S.Microbial CaCO3 precipitation for the production of biocement[D].Murdoch University,2004. [11] 徐晶.基于微生物矿化沉积的混凝土裂缝修复研究进展[J].浙江大学学报(工学版),2012,46 (11):2020-2027. [12] Wang J, Tittelboom K V, Belie N D, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J].Construction and Building Materials,2011,26(1) : 532-540. [13] Paassen V. Bio-mediated ground improvement: from laboratory experiment to pilot applications [J].Geotechnical special publication, 2011: 6(211):4099-4108. [14] Van der Star W R L,Van Wijngaarden W K,Van PaassenW A,et al.Stabilization of gravel deposits using microorganisms[C] / /Proceedings of the 15th EuropeanConference on Soil Mechanics and Geotechnical Engineering. Athens: IOS Press, 2011: 85-90. [15] Fujita Y,Taylor J L, Wendt L M, et al.Evaluating the potential of native ureolytic microbes to remediate a 90sr contaminated environment[J]. Environ. Sci. Technol.,2010,44(19):7652-7658 . [16] 胡金星,苏晓梅,韩慧波,等.固定化微生物技术修复多氯联苯污染土壤的应用前景[J].应用生态学报,2014,25(6):1806-1814. [17] 戚鑫,陈晓明,肖诗琦,等.生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J].农业环境科学学报,2018,37(8):1683-1689. [18] 马伶俐. 生物炭基固定化微生物及对石油污染土壤的修复研究[D].成都:西南石油大学,2017. [19] 黄真真,陈桂秋,曾光明,等.固定化微生物技术及其处理废水机制的研究进展[J].环境污染与防治,2015,37(10):77-85. [20] 廖义玲,贺珺,秦刚,等.中国南方红粘土工程属性的变化规律[J].贵州科学,2008(4):53-58. [21] 廖义玲.贵州碳酸盐岩地表堆积物的地质特征及其演化[J].贵州科学,2000(4):267-271. [22] 王麒,陈筠,赵鹏,等.碱污染红黏土物理性质及微观结构试验研究[J].地下空间与工程学报,2017,13(6):1483-1492. [23] 高彬,陈筠,杨恒,等.红黏土在不同应力路径下的力学特性试验研究[J].地下空间与工程学报,2018,14(5):1202-1212. [24] 陈筠,王麒,于明圆,等.碱污染红黏土抗剪强度及破裂面微观结构特征研究[J].工程地质学报,2018,26(5):1300-1310. [25] 施鹏超,陈筠,王麒,等.细菌对红黏土抗剪强度的影响研究[J/OL].长江科学院院报:1-8[2019-03-29].http://kns.cnki.net/kcms/detail/42.1171.TV.20181109.1411.004.html. [26] 陈筠,赵鹏,何维锋,等.碱污染红黏土抗剪强度特性室内试验研究[J].长江科学院院报,2017,34(12):94-100. [27] 陈筠,高彬,张瑶丹,等.不同应力路径下红黏土的力学特性与含水率的变化规律试验研究[J].水利水电技术,2019,50(2):53-60. [28] 赵鹏,陈筠,何维锋,等.碱污染红黏土土工试验方法温度效应影响研究[J].科学技术与工程,2017,17(16):122-127. [29] 李广信.高等土力学(第二版)[M].北京:清华大学出版社,2016.
点击查看大图
计量
- 文章访问数: 1619
- HTML浏览量: 565
- PDF下载量: 389
- 被引次数: 0