Analysis of foundation selection of a water-transmission aqueduct across a karst area in Guizhou Province
-
摘要: 贵州一输水渡槽跨越岩溶区域,可能会产生岩溶塌陷、向临空面失稳等工程地质问题。本文在地质钻探、物探和现场调查的基础上,通过基于地质力学的地质轮廓法进行裂隙配套,判断节理裂隙性质及其对岩溶的影响,结合深浅埋洞穴的界定初步判断其稳定性,并采用基于规范、标准的半定量稳定性分析及含节理裂隙的二维有限元分析、三维有限差分分析,从位移、应力分布及塑性区发展及破坏模式角度来判断溶洞在上部荷载作用下的稳定性。研究表明:本工程溶洞顶板的受力同深梁的受荷模式,节理裂隙很大程度上影响顶板的稳定性,顶板容易沿节理裂隙和层面产生剪切、拉伸作用。最后结合长期安全稳定运行综合给出基础选型建议。Abstract: A water-transmission aqueduct crosses a karst area of Guizhou Province, which may cause engineering geological problems such as karst collapse and instability of slopes. On the basis of geological and geophysical surveys and drilling property of joints and cracks and their effects on karst are analyzed using the geological outline method, and the stability of buried karst caves is assessed. Standard semi-quantitative analysis and 2D- and 3D FEM analyses containing joints and fractures are performed to further examine the stability of karst caves under overlying loads from the perspectives of displacement, stress distribution, development of plastic zones and failure modes. Research shows that the stress of the roof of the karst cave beneath the project site is similar to that of a loaded beam at depth, in which joints and fractures can have a great impact on the stability of the roof. Shearing and extension are easy to occur along these discontinuities. Based on such analysis, a proper type of foundation is recommended for the long-term safety and stability of the planned aqueduct.
-
[1] Goodings, D J, Abdulla, W. A. Stability charts for predicting sinkholes in weakly cemented sand over karst limestone. Engineering Geology[J].2002,65(2-3):179-184. [2] 孟庆山,陈勇,汪稔.岩溶洞穴工程地质条件与顶板稳定性评价[J].土工基础,2004,18(5):55-58. [3] Jordá-Bordehore L, Martín-García R., Alonso-Zarza A. M., Jordá-Bordehore R., & Romero-Crespo P. L.. Stability assessment of shallow limestone caves through an empirical approach: application of the stability graph method to the Castanar Cave study site (Spain)[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4):1469-1483. [4] 蒋冲,赵明华,胡柏学,等.路基溶洞顶板稳定性影响因素分析[J].公路工程,2009,34(1):5-9. [5] 王桂林. 岩石洞室地基稳定性研究[D].重庆:重庆大学,2004. [6] 张永兴,王桂林.高层建筑岩石洞室地基稳定性分析方法与应用[J].工程力学,2007,24(S2):110-120. [7] 滑帅.广东岩溶区某输电塔桩基稳定性数值模拟分析[J].中国岩溶,2014,33(1):44-50. [8] 孙映霞,张智浩,张慧乐.岩溶区桩基稳定性影响参数敏感性分析[J].地下空间与工程学报,2013,9(2):297-303. [9] 戴自航,范夏玲,卢才金.岩溶区高速公路路堤及溶洞顶板稳定性数值分析 [J].岩土力学,2014,35(S1):382-390. [10] Parise M, Lollino, P. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy[J]. Geomorphology, 2011,134(1-2):132-143. [11] 金晓文,陈植华,曾斌,等.岩溶塌陷机理定量研究的初步思考[J].中国岩溶,2013,32(4):437-446. [12] 石祥锋. 岩溶区桩基荷载下隐伏溶洞顶板稳定性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2005. [13] 刘铁雄. 岩溶顶板与桩基作用机理分析与模拟试验研究[D].长沙:中南大学,2003. [14] 张建同,陈顺军,刘素梅,等.隐伏岩溶条件下的上部结构-基础-地基共同作用数值模拟分析[J].中国岩溶,2018,37(5):792-798. [15] 张俊萌,方从启,朱杰,等.超深层岩溶地基上高层建筑桩筏基础性能研究[J].地下空间与工程学报,2015,11(2):343-349. [16] 《工程地质手册》编委会.工程地质手册(第五版)[M].北京:中国建筑工业出版社,2017:636-638 [17] 徐邦栋.山区大中型山坡病害“轮廓勘察”的定性方法和技术及病害防治[M].北京:中国铁道出版社,2016:59-67. [18] Rocscience Inc. . Phase 2 joint network verification[R]. Ontario:Rocscience Inc.,2011. [19] Hoek Evert ,Marinos Paul. A brief history of the development of the Hoek-Brown failure criterion[J]. Soils and Rocks ,2007(2):85-92. [20] 深梁专题组.钢筋砼深梁的试验研究[J].建筑结构学报,1987(4):23-35. [21] Itasca Consulting Group.Inc.FLAC3D-Fast Lagrangian Analysis of Continua in 3 Dimension,Version.5.0 User’s Manual[R].Minneapolis:Itasca,2015. [22] 陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009:272-296. [23] 吴明鑫.高层建筑下岩溶空洞地基的稳定性分析[D].广州:广州大学,2013. [24] 周含川.高层建筑结构与岩溶地基、基础的共同作用分析[D].重庆:重庆大学,2005.
点击查看大图
计量
- 文章访问数: 1871
- HTML浏览量: 569
- PDF下载量: 465
- 被引次数: 0