Application of the tracer test in karst hydrogeological prospecting: An example of Heilongtan, Lijiang, Yunnan
-
摘要: 为查明云南丽江黑龙潭泉域九子海洼地补给区地下水与周边泉水的连通关系,提供泉水修复的科学依据,采用人工化学示踪方法,选取碘化钾作为示踪剂,开展了一次大型地下水示踪试验。根据试验数据计算地下水渗流速度,并分析黑龙潭泉域地下水系统结构特征。结果表明:九子海洼地补给区地下水与黑龙潭泉群和古城泉群具有显著的连通关系,与清溪泉群和白浪花泉群不存在连通关系,九子海至黑龙潭和古城的地下水渗流速度分别为405.86~1 077.84 m·d-1、349.96~629.09 m·d-1。九子海洼地为黑龙潭泉域地下水系统的主要补给区,同时也可作为黑龙潭泉水修复的有效注水点,接受补给后,主要通过深层岩溶管道向南运移至黑龙潭—古城方向,其中黑龙潭泉群为系统的排泄天窗。Abstract: The purpose of this work was to investigate the connection between groundwater and the surrounding springs in the recharge area of the Jiuzihai depression, Lijiang, Yunnan Province, and to provide scientific basis for spring water restoration. Using the artificial chemical tracer method a large-scale groundwater tracer test has been conducted with potassium iodide as tracer. Based on the experimental data, the seepage velocity of groundwater was calculated and the characteristics of the groundwater system in Heilongtan springs area were analyzed. The results show that the groundwater in the Jiuzihai depression is significantly connected with Heilongtan and Gucheng springs, while not connected with Qingxi springs and Bailanghua springs. The seepage velocity of groundwater from Jiuzihai to Heilongtan and Gucheng is around 405.86-1,077.84 m· d-1 and 349.96-629.09 m· d-1, respectively. The Jiuzihai depression is the main recharge area of the groundwater system of the Heilongtan springs area, which can also be used as an effective injection site for the restoration of Heilongtan springs. After receiving the recharge, it is mainly transported to area around Heilongtan-Gucheng by deep karst pipelines, of which the Heilongtan springs are the discharge area of the groundwater system.
-
Key words:
- tracer test /
- Heilongtan /
- potassium iodide /
- groundwater system
-
[1] 袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994:129-134. [2] 沈春勇.水利水电工程岩溶勘察与处理[M].北京:中国水利水电出版社,2015:143-146. [3] WILLIAMS C F,NELSON S D. Comparison of Rhodamine-WT and Bromide as a Tracer for Elucidating Internal Wet-land Flow Dynamics[J].Ecological Engineering,2011,37:1492-1498. [4] 易连兴,夏日元,唐建生,等.地下水连通介质结构分析:以寨底地下河系统实验基地示踪试验为例[J].工程勘察,2010,38(11):38-41. [5] 黄炯,尹推军.地下水示踪技术在水库渗漏勘察中的应用[J].低碳世界,2017,2(4):99-100. [6] 陈相彪.地下水示踪连通试验在水文地质勘察中的应用[J].水利科技与经济,2014,20(7):93-95. [7] 郑克勋,刘建刚.多元连通示踪试验研究地下水流场的一个工程实例[J].贵州水力发电,2009,23(4):63-68. [8] 黄保健,张之淦,陈伟海,等.高山峡谷区岩溶水示踪试验:以川西锦屏地区为例[J].中国岩溶,1995,14(4):362-371. [9] 曾莘茹,姜光辉,郭芳,等.桂林甑皮岩洞穴遗址地下水示踪及污染来源分析[J].中国岩溶,2016,35(3):245-253. [10] 潘国营,轩吉善,岳保祥,等.基于GSM水位遥测系统的大型放水与示踪联合试验[J].河南理工大学学报(自然科学版),2007,28(2):152-155. [11] 张乃兴,李伟,安立贵,等.济南四大泉群水源地连通试验研究[J].山东师大学报(自然科学版),1998,13(4):49-53. [12] 时晓,张宇,李红叶,等.诺水河风景区双峰垭隧道地下水示踪试验与分析[J].甘肃水利水电技术,2019,55(2):32-35. [13] 杨前,翟加文,张智旺.示踪连通试验在确定岩溶水径流通道中的应用[J].中州煤炭,2013(7):74-76. [14] 刘人太,李术才,张庆松,等.示踪试验分析方法在地下工程水害治理中的应用研究[J].岩石力学与工程学报,2012,31(4):814-821. [15] 尹尚先,徐斌,徐慧,等.化学示踪连通试验在矿井充水条件探查中的应用[J].煤炭学报,2014,39(1):129-134. [16] 马祖陆,周春宏,张之淦,等.四川锦屏落水洞岩溶地下水示踪[J].中国岩溶,2006,25(3):201-210. [17] 陈鑫.云南黑龙潭岩溶泉域地下水系统划分及泉水动态特征分析研究[D].南京:河海大学,2019. [18] 郑克勋. 地下水人工化学连通示踪理论及试验方法研究[D].南京:河海大学,2007. [19] 梅正星.我国喀斯特地下水示踪概况[J].中国岩溶,1988,7(4):371-377. [20] SHIRRA G R,SARA P A,YANA L, et al. Iodinated Con-trast Media Oxidation by Nonthermal Plasma: The Role of Iodine as a Tracer[J].Water Research,2011,45: 5047-5057. [21] 刘兴云,曾昭建.地下水多元示踪试验在岩溶地区的应用[J].岩土工程技术,2006,20(2):67-70. [22] 张会娟,谢雅兰,王朝亚.测定饮用水中碘化物的含量:离子色谱法和化学法的比较[J].城镇供水,2017,6(6):35-38. [23] 王红伟,路凯,刘俊娓,等.离子色谱法测定饮用水中碘化物[J].实用预防医学,2006,13(5):1331-1333. [24] 程岩,贾岩.微量物质示踪剂用量设计探讨[J].油气井测试,2010,19(3):64-66.
点击查看大图
计量
- 文章访问数: 2122
- HTML浏览量: 981
- PDF下载量: 515
- 被引次数: 0