Karst geological conditions of the planned Ronglai reservoir in Guizhou Province
-
摘要: 冗赖水库位于珠江流域的北盘江与南盘江两大水系之间的高原岩溶台地,左右岸外侧均存在低邻槽谷,坝址下游存在底部发育落水洞的大型岩溶海子,水库成库难度大,当地人饮水问题突出。通过岩溶水文地质调查、钻探、物探、连通试验等手段,从地形条件、地层岩性、地质构造、水文地质条件、岩溶发育特征等方面,对冗赖水库成库条件进行了分析论证。认为水库库盆底部依托隔水性岩体,不存在库水渗漏问题,但水库两岸受分水岭地下水位低、断层破碎带及岩溶发育等影响,存在库水渗漏问题,同时库首两岸可能存在顺平缓岩层面、溶蚀裂隙等产生渗漏问题。因此建议采用垂直防渗方式,防渗标准(透水率)小于3 Lu或防渗帷幕下限接稳定地下水位以下10 m,遇到溶洞等地质缺陷时应查明其分布特征,并根据实际情况降低防渗底线。Abstract: The planned Ronglai reservoir is located on a karst platform between the Beipanjiang and Nanpanjiang water systems in the Pearl River basin, southwestern China. There are low-lying troughs on the left and right banks of the reservoir and large karst lakes with a number of sinkholes develop at the downstream of the chosen dam site. To further examine geological conditions of this reservoir, this work conducted the studies in terms of hydrogeological surveys, drilling, geophyical exploration and connectivity tests, involving the analyses of terrain, strata, lithology, geological structure, hydrogeological settinggy, and karst characteristics. Analytical result suggests that there will be no water leakage to occur at the bottom of the reservoir basin because of the existing impermeable rock mass. But as the two banks of the reservoir area are affected by the low groundwater level of the watershed, fault fracture zones and karst development, potential leakage remains a problem. Meanwhile, leakage can also take place along gentle-dipping rock surfaces and erosion cracks on the banks of the reservoir head. It is recommended to adopt the vertical anti-seepage method, in which the impervious standard (water permeability) is less than 3 Lu or the lower limit of the anti-seepage curtain is 10 m below the stable groundwater level. At the same time, when encountering geological defects such as caves, the threshold of this measure should be lowered to a appropriate extent.
-
Key words:
- reservoir leakage /
- karst /
- platform /
- groundwater characteristics /
- geologic conditions of reservoir
-
[1] 邹成杰,张汝清,徐福兴,等,水利水电岩溶工程地质[M].北京:水利电力出版社,1994. [2] 卢耀如,岩溶地区主要水库工程地质问题与水库类型及其防渗处理途径[J].水文地质工程地质,1982(4):15-21. [3] 费英烈,邹成杰.贵州岩溶地区水库坝址渗漏问题的初步研究[J].中国岩溶,1984,3(2):120-129. [4] 邹成杰.库坝址岩溶渗漏类型及防渗帷幕布置型式的研讨[J].中国岩溶,1987,6(2):149-152. [5] 赵瑞,许模.水库岩溶渗漏及防渗研究综述[J].地下水,2011,33(2):33-36. [6] 肖万春.水库岩溶渗漏勘察技术要点与方法研究[J].水力发电,2008,34(7):53-55. [7] 万伟峰,王泉伟,东庄水库岩溶渗漏几个关键问题的探讨[J].人民黄河,2015,37(2):99-103. [8] 杜毓超,李兆林,唐健生.湖南新田水浸窝水库渗漏分析及其治理[J].中国岩溶,2003,22(4):271-275. [9] 范玉龙,万军伟.洞坪水库岩溶发育规律及水库渗漏条件分析[J].中国岩溶,2003,22(6):130-135. [10] 邹成杰.水库岩溶渗漏地质模型及数学模型的初步研究[J].中国岩溶,1990,9(3):231-240. [11] 邹成杰.深岩溶发育的基本规律与水库岩溶渗漏的研究[A].第四届全国工程地质大会论文集[C].1992. [12] 李择卫.塞海湖水库库首岩溶渗漏问题研究[J].人民长江,2016,47(23):50-54. [13] 郑捷.黔西南侵蚀台地地区双龙溶洼水库渗漏分析[D].成都:成都理工大学,2017:1-20. [14] 张欣,赵明阶,汪魁,等.电法三维成像技术在隧道岩溶探测中的应用[J].中国岩溶,2016,35(3):291-298. [15] 卢晓鹏,谭光明.清华洞暗河堵洞成库与防渗技术[J].中国岩溶,2012,31(2):179-184. [16] 陈贻祥,邬健强,黄奇波,等.水中自然电场法探测病态水库岩溶渗漏通道:以金鸡河水库一级水电站为例[J].中国岩溶,2018,37(6):883-891. [17] 黄顺涛.断裂构造发育对贵州两岔河水库岩溶渗漏的影响研究[J].水利水电技术,2017,48(3):127-132. [18] M Séger,R Guérin,A Frison,et al.A 3D electrical resistivity tomography survey to characterise the structure of a albeluvic Tonguing horizon composed of distinct elementary pedological volumes[J].Geoderma,2014(5):219-220,168-176. [19] C Kneisel,A Emmert,J K?stl.Application of 3D electrical resistivity imaging for mapping frozen ground conditions exemplified by three case studies[J]. Geomorphology, 2014, 210(4):71-82. [20] 李择卫.龙潭河水库右岸岩溶渗漏问题分析[J].资源环境与工程,2016,30(3):399-403. [21] 陈文理,王怀球,向能武,等.构皮滩水电站坝址区岩溶发育特征[J].人民长江,2006,37(3):11-13. [22] 裴建国,梁茂珍,陈陈,等.西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J].中国岩溶,2008,27(1):6-10. [23] 莫美仙,王宇,李峰,等.云南南洞地下河系统边界及性质研究[J].中国岩溶,2019,38(2):173-185.
点击查看大图
计量
- 文章访问数: 2117
- HTML浏览量: 949
- PDF下载量: 528
- 被引次数: 0