Discussion on the method of searching for safe drinking waterin high-sulfate areas of Guizhou Province
-
摘要: 贵州镇宁地区地下水中硫酸盐超标是典型的环境地质问题之一,而该区地下水中硫酸盐超标主要来自于三叠系中统关岭组(T2g)含水岩组。采集水样分析发现该含水岩组中地下水的硫酸盐含量达到了275.42~1 100 mg?L-1,为Ⅳ-Ⅴ类水。运用地下水中硫同位素追踪,其硫酸盐主要来源于石膏溶解,并通过实施“探采结合井”(ZK3),初步查明 “膏岩层”分布于三叠系中统关岭组一段下亚段(T2g1a)的中下部,厚度在1~1.5 m。而分层抽水试验显示:T2g含水岩组试段水质为Ⅴ类,降深在11.50 m时涌水量为256.61 m3?d-1;当揭穿T2g膏岩层含水层并进行封隔止水后,钻孔自流量为330.05 m3?d-1,降深在10.80 m时钻孔涌水量达628.84 m3?d-1,水质属Ⅲ类水。因此,在类似因水质超标而引起的功能性缺水地区,可越过膏岩层而获取深层安全的可饮用的地下水。Abstract: Zhenning area is located in the southwest of Guizhou Province, which is a national key development area in the main functional zone of Guizhou Province. It is a typical karst mountainous areas, where carbonate rocks are widely distributed. The excessive sulfate content in groundwater is one of the main environmental geological problems, which makes the problem of functional water shortage quite prominent, especially drink water for local villagers. This paper discusses how to find safe drinking water in the study area. Our analysis is based on data from hydrogeological and environmental geology survey, geophysical exploration, hydrogeological drilling, water sample collection and testing. It is found that the sulfate in groundwater in this area is mainly from the T2g aquifer formation, and the sulfate content in groundwater reaches 275.42-1,100 mg?L-1, implying the water of Ⅳ-V class. Tracing by 34S isotope in groundwater shows that the sulfate is mainly from gypsum dissolution. The implementation of a " combined exploration and pumping" well ZK3 reveals that the gypsum formation is distributed in the middle and lower part of T2g1a with a thickness of about 1-1.5 m. The stratified pumping test shows that the content of SO42- in groundwater in the test section of the T2g aquifer formation is 720 mg?L-1, evaluated as V class water. The water inflow is 256.61 m3?d-1 when the depth is reduced to 11.50 m. When the groundwater aquifer of the T2g gypsum formation is penetrated and sealed, the content of SO42- in groundwater is 124 mg?L-1, the borehole self-discharge rate is 330.05 m3?d-1, and the depth is reduced to 10.80 m. In this condition the borehole water inflow reaches 628.84 m3?d-1, and the water quality is Ⅲ class. This investigation demonstrates that safe and drinkable groundwater can be found below the gypsum layer by drilling to some depth. Such a method can also be applied to other regions with similar problems of water quality.
-
Key words:
- sulfates /
- groundwater /
- gypsum layer
-
[1] Ford D, Williams P. Karst Hydrogelology and Geomorphology[M]. New York:John Wiley & Sons, 2007:1-45. [2] Liu Congqiang,Lang Yunchao,Satake H, et al.Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground eater of Guiyang,SW China: Combined δ37Cl and δ34S approach[J]. Environmental Science & Technology,2008,42(15):5421-5427. [3] Crowley S F,Mccarthy M D B,Bottrell S H,et al. δ34S of Lower Carboniferous Anhydrite, Cumbria and Its Implicationgs for Mineralization in the northern Pennines[J]. Journal of the Geological Society,2008,154(4):597-600. [4] Hosono T, Nakano T, Igeta A, et al. Impact of fertilizer on a small watershed of Lake Biwa: Use of sulfur and strontium isotopes in environmental diagnosis.Science of the Total Enviroment, 2007,384(1-3):342-354. [5] Niu Xinsheng, Liu Xifang, Chen Xiwen. Hydrochemical characteristics and origin for salt springs water in Dogai Coring area of north Qiangtang basin, Tibet[J]. Acta Geological Sinica, 2014,88(6):1003-1010(in Chinese with English abstract). [6] 任坤,潘晓东,兰干江,等.黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别[J].地质学报,2016,90(8):1922-1932. [7] 王明章,张林,王伟,等.贵州省岩溶区地下水与地质环境[M].北京:地质出版社,2015. [8] 袁道先.我国岩溶资源环境领域的创新问题[J].中国岩溶,2015,34(2):98-100. [9] 袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J].中国岩溶,2000,19(2):103-108. [10] 苏印,官冬杰,苏维词.基于SPA的喀斯特地区水安全评价[J].中国岩溶,2015,34(6):560-569. [11] 贵州省地质矿产局区域地质调查大队.贵州岩相古地理图集[M].贵阳:贵州科技出版社,1992. [12] 刘再华,W Dreybrodt,韩军,等.CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14. [13] 闫志为.硫酸根离子对方解石和白云石溶解度的影响[J].中国岩溶,2008,27(1):24-31. [14] 武瑶,徐志方.大气降水中稳定同位素研究进展[J].地球与环境,2013,41(6):688-695. [15] 洪业汤,张鸿斌,朱詠煊,等.中国大气降水的硫同位素组成特征[J].自然科学进展:国家重点实验室通讯,1994,4(6):741-745. [16] Xiao Huayun,Liu Congqiang. Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China[J].Atmospheric Environment,2002,36(33):5121-5130. [17] 洪业汤,张鸿斌,朱詠煊,等.中国煤的硫同位素组成特征及燃烧过程硫同位素分馏[J].中国科学:B辑,1992,5(8):868-873. [18] 蒋颖魁,刘丛强,陶发祥.贵州乌江水系河水硫同位素组成研究[J].水科学进展, 2007,18(4):558-565. [19] 蒋颖魁.喀斯特流域硫同位素地球化学与碳酸盐岩侵蚀[D].贵阳:中国科学院地球化学研究所,2007. [20] 李小倩,刘运德,周爱国,等.长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J].地球科学:中国地质大学学报,2014,39(11):1547-1554. [21] Krous H R,Crinenko V A. Stable Isotopic: Natural and Anthropogenic Sulphur in the Environment[M]. Chichester: John Wiley,1991:1-440.
点击查看大图
计量
- 文章访问数: 1684
- HTML浏览量: 534
- PDF下载量: 399
- 被引次数: 0