• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶IGCP国际合作30年与岩溶关键带研究展望

章 程 蒋忠诚 Chris Groves 袁道先

章 程, 蒋忠诚, Chris Groves, 袁道先. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3): 301-306. doi: 10.11932/karst20190302
引用本文: 章 程, 蒋忠诚, Chris Groves, 袁道先. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3): 301-306. doi: 10.11932/karst20190302
ZHANG Cheng, JIANG Zhongcheng, Chris Groves, YUAN Daoxian. 30 years international cooperation with IGCP and perspectives of karst critical zone research[J]. CARSOLOGICA SINICA, 2019, 38(3): 301-306. doi: 10.11932/karst20190302
Citation: ZHANG Cheng, JIANG Zhongcheng, Chris Groves, YUAN Daoxian. 30 years international cooperation with IGCP and perspectives of karst critical zone research[J]. CARSOLOGICA SINICA, 2019, 38(3): 301-306. doi: 10.11932/karst20190302

岩溶IGCP国际合作30年与岩溶关键带研究展望

doi: 10.11932/karst20190302
基金项目: UNESCO/IUGS国际地学计划项目(IGCP661);科技部援外项目(KY201802009);中国地质调查局基本科研业务费项目( YYWF201639, JYYWF20182002);中国科学院国际伙伴计划项目课题(132852KYSB20170029-01)

30 years international cooperation with IGCP and perspectives of karst critical zone research

  • 摘要: 全球岩溶类型多样,对环境变化敏感,资源与环境问题突出,是地球关键带监测与研究的重点,IGCP661项目的执行为岩溶区关键带类型划分与监测对比研究提供了契机和国际合作平台。近30年岩溶IGCP执行始终强调岩溶系统与人类活动环境的相互作用,其轨迹实际上与地球系统科学到地球关键带理念是一脉相承的。IGCP299提出了岩溶形态组合概念,揭示各种岩溶形态与其形成环境之间的因果关系。岩溶动力系统(IGCP379), 岩溶生态系统(IGCP448)概念的提出有助于我们更好地理解岩溶系统的整体功能,及系统内水、生物地球化学过程、人类活动的相互作用,进而形成了一整套岩溶动力学研究方法体系。开辟了岩溶记录与全球变化、碳循环与应对气候变化、石漠化形成演变与生态修复等研究新领域,并取得了丰硕的研究成果,有力地推动了现代岩溶学的发展。

     

  • [1] Jiang Z Ch, Zhang Ch, Qin X Q, et al. Structure feature and function of the karst critical zone[J]. Acta Geologica Sinica(English Edition), 2019,93(s1):109-112.
    [2] Ford D C , William P W. Karst hydrogeology and geomorphology [M]. Chichester: JohnWilly&Sons, 2007:1-562.
    [3] Yuan D X, Liu Z H(Eds.), Global Karst Correlation[C]. Beijing/New York:Science Press; Utrecht/Tokyo:VSP BV. 1998,308.
    [4] Yuan D X. The carbon cycle in karst[C].Z. Geomorph N F,SupplBd,1997,108:91-102.
    [5] Yuan D X, Cheng H, Edwards R L, et al., Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304:575-578.
    [6] Chris G, Yuan D X,Zhang Ch. IGCP299, 379, 448, 513, 598:Global efforts to understand the nature of karst systems:over two decades with the IGCP[C]. In:Derbyshire E.(Ed.), Tales Set in Stone-40 Years of the International Geoscience Programme(IGCP). UNESCO Paris, Framce,2012:80-87.
    [7] Zhang Ch , Chris G , Yuan D X, New development of IGCP/SIDA 598 "Environmental Change and Sustainability in Karst Systems (2011-2015)"[J]. Episodes, 2015,38(3):219-221.
    [8] Plummer L N, Wigley T M L, Parkhurst D L. Kinetics of calcite dissolution in CO2 -water systems at 5 ℃to 60 ℃ and 0.0 to 1.0 atm CO2 [J]. America Journal of Science, 1978,278:179-216.
    [9] Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate[J]. Annu Rev Earth Planet Sci, 2000,28:611-667.
    [10] Dreybrodt W. Processes in Karst systems:Physics, Chemistry, and Geology[M]. Berlin Heidelberg:Springer-Verlag,1988, 288.
    [11] Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H2O+CO2H++HCO-3[J]. Geochim Cosmochim Acta, 1997,61:2879-2889.
    [12] Hélie J-F, HillaireMarcel C, Rondeau B. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St.Lawrence River-isotopic and chemical constraint. Chemical Geology[J]. 2002, 186(1):117-138.
    [13] Yuan D X, Sensitivity of karst process to environmental change along the PEP II transect[J]. Quaternary International, 1997,37:105-113.
    [14] Jiang Zh C, Yuan D X. CO2 Source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22:33-35.
    [15] Yuan D X, Zhang Ch (Eds). Karst Processes and the carbon cycle-Final Report of IGCP379[C]. Beijing:Geological Publishing House,2002,220.
    [16] Yoshimura K, Inokura Y. The geochemical cycle of carbon dioxide in a carbonate rock area, Akiyoshi-dai Plateau, Yamaguchi, Southwestern, Japan[C]. In:Proceedings of 30th International Geological Congress,1997,24:114-126.
    [17] Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000,39:1053-1058.
    [18] Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283:31-43.
    [19] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Sci Rev., 2010,99:162-172.
    [20] Zhang Ch. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Sci Bull, 2011,56:3759-3765.
    [21] Zhang Ch , Mahippong W , Wang J L, et al. Dissolution rates in soil of different landuses of typical tropical karst peak depression valley in Thailand[J]. Quaternary Science, 2016,36(6):1393-1402.
    [22] Zhang Ch, Yuan D X, Cao J H, Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47:615-619.
    [23] 王宇.岩溶高原地下水径流系统垂向分带[J].中国岩溶,2018,37(1):1-8.
    [24] Yuan D X, Karst of China[M]. Beijing:Geological Publishing House, 1991:224.
    [25] Doerfliger N, Jeannin P Y, Zwahlen F. Water vulnerability assessment in karst environment:a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method) [J]. Environmental Geology, 1999,39(2):165-176.
    [26] Jeannin P Y, Cornaton F, Zwahlen F, et al. VULK:a tool for intrinsic vulnerability assessment and validation[C]. In:Seventh conference on limestone hydrology and fissured media, Besnacon 20-22 Sep 2001, Sciences et techniques de l’environnement. Mémoire hors-série, 2001,13:185-190.
    [27] Malík P, ?vasta J. REKS-An alternative method of karst groundwater vulnerability estimation[C]. In:Proceedings of XXIX IAH Congress:Hydrogeology and land use management. Editors:Miriam Fendeková, Marián Fendek. Bratislava, Slovak Republic, 1999, 79-86.
    [28] Daly D, Dassargues A, Drew D, et al. Main concepts of the European approach for (karst) groundwater vulnerability assessment and mapping[J]. Hydrogeol J,2002,10(2):340-345.
    [29] Malík P, ?vasta J, Groundwater Vulnerability Assessment Using Physical Principles of Contamination[C]. In:Decision support for natural disasters and intentional threats to water security(Illangasekare T H et al. (eds.)), Springer Science+Business Media B.V. 2009:199-211.
    [30] Malík P, ?vasta J, Michalko J, et al. Indicative mean transit time estimation from δ18O values as groundwater vulnerability indicator in karst-fissure aquifers[J]. Environmental Earth Science,2016,75:988. (https://doi.org/10.1007/s12665-016-5791-2.)
    [31] 章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究:以广西马山弄拉兰电堂和东旺泉为例[J].中国岩溶,2003,22(1):1-5.
    [32] 彭韬,周长生,宁茂岐,等.基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J].第四纪研究,2017,37(6):1262-1270.
    [33] Yuan D X. IGCP448, World Correlation of Karst Ecosystem(2000-2004) [J]. Episodes, 2000,23(4):285-286.
    [34] Zhang Cheng, Yuan Daoxian. New development of IGCP 448 “World Correlation of Karst Ecosystem (20002004)”[J]. Episodes, 2001,24(4):279-280.
    [35] Jiang Z C, Lian Y Q, Qin X Q. Rock desertification in southwest China:impact, cause, and restoration[J]. Earth Science Review,2014,132:1-12.
    [36] 蒋忠诚,罗为群,童立强,等.21世纪西南岩溶石漠化演变特点及影响因素[J].中国岩溶,2016,35(5):461-468.
    [37] Luo W Q, Jiang Zh Ch , Yang Q Y,et al. The features of soil erosion and soil leakage in karst peak-cluster areas of Southwest China[J]. Journal of Groundwater Science and Engineering, 2018, 6(1):18-30.
    [38] Brantley S L, White T S, White A F. Frontiers in exploration of the critical zone[R]. USA,2005.
    [39] Lin H S. Earth’s Critical Zone and hydropedology:concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences,2010,6(2):3417-3481.
    [40] National Research Council. Basic Research Opportunities in Earth Science[M]. Washington DC:National Academy Press,2001, Chapter2:35-45.
  • 加载中
计量
  • 文章访问数:  2256
  • HTML浏览量:  631
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 发布日期:  2019-06-25

目录

    /

    返回文章
    返回