Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks
-
摘要: 碳酸盐岩的H2CO3溶蚀产生岩溶碳汇,占整个岩石风化碳汇的 94%。西南岩溶区硫酸型酸雨严重,硫酸型酸雨广泛参与碳酸盐岩的溶蚀。H2SO4参与的碳酸盐岩风化是一个大气CO2净释放过程,具有减汇作用巨大。另一方面,岩溶区石灰土壤和地下水具有较高的pH值及盐基饱和度,对H+有巨大的缓冲作用,大气酸沉降在碳酸盐岩地区可能并不会造成地下水的HCO3-和pH降低;相反,较高浓度的SO42-所产生的盐效应和SO2-4与各种阳离子形成的离子对会增大方解石、白云石溶解度,可增强H2CO3对碳酸盐的溶蚀,这可能会使岩溶作用产生更大的碳汇效应。因此,硫酸型酸雨参与碳酸盐岩风化的减汇效应不仅可能被高估,硫酸型酸雨还可能增强碳酸盐岩的H2CO3溶蚀,具有增加岩溶碳汇效应的作用。应结合石灰土壤对大气酸沉降的缓冲容量和阈值及大气酸沉降的H+与土壤中盐基离子的交换量,并综合考虑盐效应、离子对作用、同离子效应,客观评价硫酸型酸雨流经石灰土壤层后对碳酸盐岩溶蚀吸收大气/土壤CO2的影响Abstract: Carbonate rocks dissolved by carbonic acid plays an important role in contributing to the atmospheric and pedospheric CO2 uptake, which accounts for 94% of the globe carbon sinks of rock weathering. Nowadays, the sulfuric acid rain in karst area of southwest China is serious, and acid rain is widely involved in the dissolution of carbonate rocks. On one hand, the weathering of carbonate rocks with sulfuric acid participation is a net release process of atmospheric CO2, which has a great effect on reducing the sink; on the other hand, the soil formed by the weathering of carbonate rocks and the karst groundwater have higher pH and salt base saturation, which would have a great buffer effect on H+. Thus, atmospheric acid deposition in carbonate rock area will not cause the decrease of HCO3- and pH of groundwater. On the contrary, the salt load produced by relatively high concentrations of SO42- and the ion pairs formed by SO42- with various cations will increase the solubility of calcite and dolomite, which could enhance the carbonate dissolution by H2CO3 and produce more CO2 uptake in karst processes. Therefore, the deficit of CO2 uptake involved in carbonate weathering by sulfuric acid rain may be overvalued, the acid rain can also enhance the dissolution of carbonate rocks, and increase the CO2 consumption by carbonate weathering. We Should combine with the soil buffer capacity and the threshold value to the atmospheric acid deposition and exchange capacity of the soil base ion with the H+ from atmospheric acid deposition, and consider the salt effect, ion pairs and common ion, to objectively evaluate the effect of sulfuric acid rain, after flowing through the limestone soil layer, on the absorption of atmospheric/soil CO2 by carbonate rocks dissolution.
-
Key words:
- sulfuric acid rain /
- karst carbon sink /
- acid buffer capacity /
- salt effect /
- common ion effect
-
[1] Amiotte-Suchet P, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2):1038. [2] Jacobson A D, Blum J D, Chamberlain C P, et al. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps[J]. GeochimicaetCosmochimicaActa, 2003, 67: 29-46. [3] Amiotte-Suchet P, Probst J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2) [J]. Tellus, 1995, 47:273-280. [4] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1333-1340. [5] Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]∥Stocker T F,Qin D, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 465-570. [6] 蒲俊兵,蒋忠诚,袁道先,等.岩石风化碳汇研究进展:基于 IPCC 第五次气候变化评估报告的分析[J].地球科学进展,2015,30(10):1081-1090. [7] 覃小群, 蒋忠诚, 张连凯, 等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J].地质通报,2015,34(9):1749-1757. [8] 蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2): 129-134. [9] 刘再华.岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(Z1):95-102. [10] 刘再华, Dreybrodt W, 刘洹. 大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J]. 第四纪研究, 2011, 31(3):426-430. [11] Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O+CO2→ H++ HCO3[J]. GeochimicaetCosmochimicaActa, 1997, 61:2879-2889. [12] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99:162-172. [13] Pan Y, Birdsey R A, Fang J, et al.A large and persistent carbon sink in the world’s forests[J]. Science, 2011,333(6045);988-993. [14] 王文兴, 许鹏举. 中国大气降水化学研究进展[J].化学进展, 2009, 21(Z1):266-281. [15] 吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象, 2006, 24(2):70-77. [16] 汤洁,徐晓斌,巴金, 等. 1992~2006 年中国降水酸度的变化趋势[J]. 科学通报,2010, 55(8):705-712. [17] 冯砚青. 中国酸雨状况和自然成因综述及防治对策探究[J]. 云南地理环境研究,2004,16(1):25-28. [18] 徐晓华, 徐光来. 基于GIS的中国酸雨控制区酸雨空间分布特征研究[J]. 石家庄学院学报,2014, 16(3):77-83. [19] 李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983,2(2):61-64. [20] Han G L, Liu C Q. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004,204: 1-21. [21] Li S L, Calmels D, Han G L, et al. Sulfuric acid as an agent of carbonate weathering constrained by 13CDIC: examples from Southwest China[J]. Earth Planetary Science Letters, 2008,270:180-199. [22] Li X D, Liu C Q, Harue M, et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers tocharacterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry, 2010, 25:1924-1936. [23] Li X D, Liu C Q, Liu X L, et al. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China[J]. Journal of Asian Earth Sciences,2011,42:370-380. [24] Berner E K, Berner R A. The Global WalerCycle:Geochemistry and Environment [M ].Englewood C1iffs:Prentice Hall,1987:397. [25] 刘丛强, 蒋颖魁, 陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008,37(4):404-414. [26] 李军, 刘丛强, 李龙波, 等. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J]. 地球化学, 2010, 39(4):305-313. [27] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO2 uptake in the upper-middle reaches of the Wujiang River, China[J].Journal of Contaminant Hydrology,2017,203:18-27. [28] Matschullat J, Andreae H,Lessmann D, et al.Catchment acidification-from the top down[J]. Environmental Pollution,1992,77(2-3):143-150. [29] 陈静生, 夏星辉, 蔡绪贻.川贵地区长江干支流河水主要离子含量变化趋势及分析[J].中国环境科学,1998,18(2):131-135. [30] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):24-31. [31] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 30(4): 3-10. [32] Yuan D X. Progress in the study on karst processes and carbon cycle [J]. Advance in Earth Sciences, 1999, 5. [33] 蒋勇军, 袁道先. 城市发展对岩溶地下水质影响的地球化学示踪:以重庆南山老龙洞地下河系统为例[J]. 第四纪研究, 2014, 34(5):1044-1053. [34] Han G L, Liu C Q. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karstdominated terrain, Guizhou Province, China[J].Chemical Geology, 2004, 204:1-21. [35] Lang Y C, Liu C Q, Li S L, et al. Tracing natural and anthropogenic sources of dissolved sulfate in a karst region by using major ion chemistry and stable sulfur isotopes[J]. Applied Geochemistry, 2011, 26: S202-S205. [36] Liu Z, Dreybrodt W, Liu H.Atmospheric CO2 sink: Silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26(Suppl.):S292-S294. [37] 黄奇波, 覃小群, 刘朋雨, 等. 酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响[J]. 地球科学(中国地质大学学报),2015, 40(7):1237-1247. [38] 黄奇波, 覃小群, 刘朋雨, 等. 硫酸对乌江中上游段岩溶水化学及δ13CDIC的影响[J]. 环境科学, 2015, 36(9):3220-3229. [39] Amiotte-Suchet P, Probst A, Probst J L. Influence of acid rain on CO2 consumption by rock weathering: local and global scales[J]. Water Air Soil Pollut,1995,85:1563-1568. [40] Anderson S P, Drever J I, Frost C D, et al. Chemical weathering in the foreland of a retreating glacier [J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1173-1189. [41] Shin al timescales [J].Nature, 2014,507(7492):346-349.nd associated CO2 consumption in six major river basins, South Korea[J]. Geomorphology, 2011, 129(3-4): 334-341. [42] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system [J]. Science, 2000, 290(5490): 291-296. [43] Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera [J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5441-5458. [44] Millot R, Gaillardet J é, Dupré B, et al. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada [J]. Geochimica et Cosmochimica Acta, 2003, 67(7):1305-1329. [45] Lerman A, Wu L. CO2 and sulfuric acid controls of weathering and river water composition. J GeochemExplor, 2006, 88: 427-430. [46] Lerman A, Wu L L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance[J]. Mar Chem, 2007, 106: 326-350. [47] 张连凯,覃小群,刘朋雨,等.硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016,90(8):1933-1943. [48] Huiguo Sun, Jingtai Han, Dong Li, et al.Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China.Science of the Total Environment,2010 (408):4749-4760. [49] Wenjing Liu, Chao Shi, ZhifangXu, et al.Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition[J].Journal of Asian Earth Sciences,2016(127):246-256. [50] Jiang Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152(1-4):1-11. [51] 张兴波,蒋勇军,邱述兰,等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J].地球科学进展,2012,27(4):466476. [52] 黄奇波, 覃小群,刘朋雨, 等.人为活动对乌江中上游段岩溶地下水δ13CDIC及碳汇效应的影响[J].第四纪研究,2016,36(6):1358-1369. [53] 黄奇波,覃小群,刘朋雨,等. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展,2017,32(3):307-318. [54] 孙平安,李秀存,于奭, 等.酸雨溶蚀碳酸盐岩的源汇效应分析:以广西典型岩溶区为例[J]. 中国岩溶,2017,36(1):101-108. [55] 卢耀如,张凤娥.硫酸盐岩岩溶及硫酸盐岩与碳酸盐岩复合岩溶发育机理与工程效应研究[M].北京:高等教育出版社.2007:135-142. [56] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J].中国岩溶, 2008, 27(1):24-31. [57] 黄思静,杨俊杰,张文正,等.石膏对白云岩溶解影响的实验模拟研究[J].沉积学报,1996,14(1):103-109. [58] 卢耀如, 张凤娥, 阎葆瑞, 等. 硫酸盐岩岩溶发育机理与有关地质环境效应[J]. 地球学报,2002,23(1):1-6. [59] 闫志为, 张俊峰, 黄苏锦, 等. 江西东乡铜矿层间溶蚀残积堆积物的特征及成因[J].中国岩溶, 2007,26(2): 126-131. [60] 潘根兴. 土壤酸化过程的土壤化学分析[J]. 生态学杂志, 1990, 9(6):48-52. [61] 卢玫桂, 曹建华, 何寻阳. 桂林毛村石灰土和红壤元素生物地球化学特征研究[J]. 广西科学, 2006, 13(1):58-64. [62] 王敬华, 张效年, 于天仁. 华南红壤对酸雨敏感性的研究[J].土壤学报, 1994(4):348-355. [63] Mcfee W W, Kelly J M,Beck R H. Acid precipitation effects on soil pH and base saturation of exchange sites[J]. Water, Air,& Soil Pollution, 1997,77:143. [64] 岑慧贤,王树功,仇荣亮,等.模拟酸雨对土壤盐基离子的淋溶释放影响[J].环境污染与防治,2001,23(1):13-15,26. [65] 杨忠芳,余涛, 唐金荣.湖南洞庭湖地区土壤酸化特征及机理研究[J].地学前缘, 2006,13(1):105-111. [66] 张利田,陈永勤.西江干流近20年来水质变化趋势研究[J].中山大学学报(自然科学版),2002, 41(4):97-100. [67] Gert Knutsson.Groundwater Quality Management(Proceedings of the GQM 93 Conference held at Tallinn, September,1993[J].IAHS Publ.,1994(220):107-117. [68] 陈静生,王飞越, 夏星辉.长江水质地球化学[J].地学前缘,2006,13(1):74-85. [69] 夏星辉, 陈静生,蔡绪贻.应用MAGIC模型分析长江支流沱江主要离子含量的变化趋势[J].环境科学学报,1999,19(3):246-251. [70] 陈静生.环境酸化与陆地水水质演化:一个有意义的新研究领域[J]. 环境科学学报,1997,17(1): 1. [71] 谢思琴,周德智,顾宗濂,等.模拟酸雨下土壤中铜、镉行为及急性毒性效应[J].环境科学,1991,12(2):24-28. [72] 高连存,何桂华,冯素萍,等.模拟酸雨条件下降尘中Cu、Pb、Zn、Cr各形态的溶出和转化研究[J].环境化学,1994,13(5):448-451,95. [73] 黄芬, 肖琼, 尹伟璐, 等.岩溶系统中土壤氮肥施用对岩溶碳汇的影响[J].中国岩溶,2014, 33(4): 405-411. [74] 闫志为, 张志卫, 王佳佳. 硫酸水对方解石和白云石矿物的溶蚀作用[J]. 水资源保护, 2009, 25(2):79-82. [75] 闫志为,张志卫.氯化物对方解石和白云石矿物溶解度的影响[J]. 水文地质工程地质, 2009,36(1):113-118. [76] 李春龙, 赵家梅, 龙偲, 等. 模拟酸雨条件下石灰土—碳酸盐岩体系的碳汇效应[J]. 中国岩溶, 2014, 33(1):51-56. [77] 袁道先. 岩溶作用对环境变化的敏感性及其记录[J]. 科学通报, 1995(13):1210-1213. [78] Martin J B. Carbonate minerals in the global carbon cycle [J]. Chemical Geology, 2016, 449:58-72. [79] Torres M A, West A J, Li G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geologic
点击查看大图
计量
- 文章访问数: 2163
- HTML浏览量: 572
- PDF下载量: 744
- 被引次数: 0