Distribution characteristics and influencing factors of soil CO2 in different land use patterns in loess hilly region in summer
-
摘要: 为了解不同土地利用方式对土壤剖面CO2含量的影响,分析了吕梁山西侧黄土丘陵区不同土地利用类型(果树林地、大田作物地、荒地)土壤理化性质和不同深度的CO2分布特征及其影响因素。其结果表明:果树林地、大田作物地和荒地三种不同土地利用方式全磷、全钾含量差别不大,大田作物地土壤有机碳含量(2.95±1.19 g·kg-1)>荒地(2.63±1.36 g·kg-1)>果树林地(2.38±0.78 g·kg-1),而大田作物地土壤无机碳含量(14.36±5.17 g·kg-1)>果树林地(14.16±1.32 g·kg-1)>荒地(12.40±4.04 g·kg-1);同样,土壤全氮含量在大田作物地中含量最高,在其他两种土地利用方式中全氮含量大致相同。不同土地利用方式对土壤剖面CO2体积分数的影响较大,果树林地0~20 cm深度土壤CO2含量高于大田作物地和荒地,其原因:一方面为果树林地地表调落物较多,表层有机碳积累较多,在微生物分解作用下,形成了大量的CO2,另一方面,果树林地人为扰动小,而大田作物地人为扰动较大,土壤 CO2浓度更大程度上取决于农田的耕作管理措施和种植作物的品种。三种土地利用方式在土壤 80 cm 处土壤CO2含量均突然下降,其原因可能为雨水下渗吸收了土壤CO2 后与下部碳酸盐矿物发生作用,即碳酸盐矿物的溶蚀过程消耗吸收土壤CO2。土壤温、湿度也影响了土壤CO2的产生,但相关性均不显著,其原因为研究区土壤呼吸对温度响应高度依赖于土壤含水量,土壤CO2的产生速率更多受水热因子耦合作用的影响。Abstract: The Loess Plateau has a deep soil layer and contains a huge inorganic carbon pool. In order to understand the effects of different land use patterns on soil CO2 content, the physical and chemical properties of soil from different land use types (fruit trees, field crops, wasteland) and the CO2 distribution characteristics and their influencing factors at different depths of soil in the loess hilly region were analyzed. The results showed that there were no significant differences in total phosphorus and total potassium content in three different land use types of fruit trees land, field crops land and wasteland. The contents of soil organic carbon has the order of field crops land (2.95±1.19 g·kg-1) > wasteland (2.63±1.36 g·kg-1) >fruit woodland (2.38±0.78 g·kg-1), while the content of soil inorganic carbon has the order of field crop land (14.36±5.17 g·kg-1) > fruit woodland (14.16±1.32 g·kg-1) > wasteland (12.40±4.04 g·kg-1). Similarly, soil total nitrogen content is highest in field crops land , and the other two land use patterns have roughly the same total nitrogen content. Different land use types have a great impact on the CO2 volume fraction of the soil profile. The soil CO2 content in the depth of 0-20 cm in the fruit trees land is higher than that in the field crops land and wasteland. The reason for this is that on the one hand, the surface of the fruit trees land has more litter, and the surface organic carbon results in a large amount of CO2 under the action of microbial decomposition; On the other hand, the artificial disturbance of fruit trees land is small, while the field crops land are highly disturbed. The concentration of CO2 in soil depends to a greater extent on the management practices of cropland and the varieties of crops. The soil CO2 content in the soil at 80 cm in the three land use patterns suddenly decreased, which may be caused by the absorption of soil CO2 by rainwater infiltration and the action of lower carbonate minerals. That is, the dissolution process of carbonate minerals consumes soil CO2. Soil temperature and humidity all affected the production of soil CO2 to some extent, but the correlation was not significant. The reason is that soil respiration response in the study area is highly dependent on soil water content, and the rate of soil CO2 production is more affected by the coupling of hydro-thermal factors.
-
[1] Stocker T, Plattner G K, Dahe Q. IPCC Climate Change 2013: The Physical Science BasisFindings and Lessons Learned [C]. Proceedings of the EGU General Assembly Conference, 2014. [2] Brook G A, Folkoff M E, Box E O. A world model of soil carbon dioxide[J]. Earth Surface Processes & Landforms, 2010, 8(1):79-88. [3] Amundson R G, Davidson E A. Carbon dioxide and nitrogenous gases in the soil atmosphere[J]. Journal of Geochemical Exploration, 1990, 38(1-2):13-41. [4] 王红旗. 污染土壤植物-微生物联合修复技术及应用[M]. 北京: 中国环境科学出版社, 2015. [5] 蓝芙宁,王文娟,吴华英,等.不同土地利用方式下土壤CO2时空分布特征及其影响因素:以湘西大龙洞地下河流域为例[J].中国岩溶,2017,36(4):427-432. [6] 刘嘉麒, 钟华, 刘东生. 渭南黄土中温室气体组分的初步研究 [J]. 科学通报, 1996, 41(24): 2257-2260. [7] 刘强, 刘嘉麒,刘东生. 北京斋堂黄土剖面主要温室气体组分初步研究 [J]. 地质地球化学, 2000, 28(2): 82-86. [8] 李旭东, 沈晓坤, 张春平, 等. 黄土高原农田土壤呼吸特征及其影响因素 [J]. 草业学报, 2014, 23(5): 24-30. [9] 李红生, 刘广全, 王鸿喆,等. 黄土高原四种人工植物群落土壤呼吸季节变化及其影响因子[J]. 生态学报, 2008, 28(9):4099-4106. [10] Zhou W, Wang Z, Davy A J, et al. Geographic variation and local adaptation in Oryza rufipogon across its climatic range in China [J]. Journal of Ecology, 2013, 101(6): 1498-1508. [11] 吴博. 土地利用/覆被变化对三川河圪洞流域山洪形成的影响研究[D]. 太原:太原理工大学,2017. [12] 刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4):404-414. [13] Takuro Shinano, Mitsuru Osaki, Toshiaki Tadano. Comparison of growth efficiency between rice and soybean at the vegetative growth stage[J]. Soil Science & Plant Nutrition, 1995, 41(3):471-480. [14] 蓝家程, 傅瓦利, 袁波,等. 岩溶山区土地利用方式对土壤活性有机碳及其分布的影响[J]. 中国岩溶, 2011, 30(2):175-180. [15] 尤孟阳. 农田管理措施对土壤CO2排放的影响[D]. 哈尔滨: 东北农业大学, 2012. [16] 李晓光, 郭凯, 封晓辉,等. 滨海盐渍区不同土地利用方式土壤-植被系统碳储量研究[J].中国生态农业学报, 2017, 25(11) :1580-1590. [17] 蔡焕杰. 大田作物膜下滴灌的理论与应用[M]. 西安: 西北农林科技大学出版社, 2003. [18] 程建中, 李心清, 唐源,等. 贵州喀斯特地区不同土地利用方式土壤CO2体积分数变化及影响因素[J]. 生态环境学报, 2010, 19(11):2551-2557. [19] Zhang L, Qin X, Liu P, et al. Estimation of carbon sink fluxes in the Pearl River basin (China) based on a water-rock-gas-organism interaction model[J]. Environmental Earth Sciences, 2015, 74(2):1-8. [20] 慈雪伦. 七星河湿地CO2、CH4排放规律及其与土壤环境关系的研究[D]. 哈尔滨: 东北林业大学, 2012. [21] 戴万宏. 农田土壤空气CO2动态和土壤:大气界面CO2释放的研究[D]. 杨凌: 西北农林科技大学, 2002. [22] Rudi H. Kiefer. Soil carbon dioxide concentrations and climate in a humid subtropical environment [J]. The Professional Geographer, 1990, 42(2):182-194. [23] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2):217-227. [24] Greco S, Baldocchi D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest[J]. Global Change Biology, 1996, 2(3):183-198. [25] 王新源,李玉霖,赵学勇,等.干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报,2012,32(15):4890-4901. [26] Wildung R E , Garland T R , Buschbom R L .The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils[J]. Soil Biology & Biochemistry, 1975, 7(6):373-378.
点击查看大图
计量
- 文章访问数: 2054
- HTML浏览量: 580
- PDF下载量: 480
- 被引次数: 0