• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶洞穴交互带概念的提出及其在水资源管理中的意义

郭 芳 姜光辉 王文科 刘绍华

郭 芳, 姜光辉, 王文科, 刘绍华. 岩溶洞穴交互带概念的提出及其在水资源管理中的意义[J]. 中国岩溶, 2019, 38(1): 1-9. doi: 10.11932/karst20190101
引用本文: 郭 芳, 姜光辉, 王文科, 刘绍华. 岩溶洞穴交互带概念的提出及其在水资源管理中的意义[J]. 中国岩溶, 2019, 38(1): 1-9. doi: 10.11932/karst20190101
GUO Fang, JIANG Guanghui, WANG Wenke, LIU Shaohua. Concept of karst cave hyporheic zone and its significance in water resource management[J]. CARSOLOGICA SINICA, 2019, 38(1): 1-9. doi: 10.11932/karst20190101
Citation: GUO Fang, JIANG Guanghui, WANG Wenke, LIU Shaohua. Concept of karst cave hyporheic zone and its significance in water resource management[J]. CARSOLOGICA SINICA, 2019, 38(1): 1-9. doi: 10.11932/karst20190101

岩溶洞穴交互带概念的提出及其在水资源管理中的意义

doi: 10.11932/karst20190101
基金项目: 国家自然科学基金(41772269;41472239);中国地质科学院基本科研业务费(YYWF201504)

Concept of karst cave hyporheic zone and its significance in water resource management

  • 摘要: 岩溶地区以管道流为主的地下水补给、径流与排泄常常引起地下水与地表水间快速且频繁的交互与转化,并因此引发水环境退化问题。文章引用并拓展地表水文学和水文生态学中交互带的概念,提出南方岩溶地区管道流与其他类型水体交互的场所为岩溶洞穴交互带,并依据交互带的水流类型和交互方式,划分为泉口交互带、天窗交互带、落水洞交互带和管道交互带4种类型;且以泉口交互带和天窗交互带为重点,采用水文和水化学在线监测、现场测试、流量测量,结合水化学、浮游生物和微生物等的分析鉴定,剖析了交互带的水文、水化学特征和水生生物群落结构及其与水环境的关系。研究发现:岩溶洞穴交互带的水文功能有弱化趋势;泉口交互带的污染物降解能力明显,水化学功能尚能发挥作用;水生生物功能在退化,主要是由水文功能弱化导致的。水文功能弱化是岩溶洞穴交互带环境功能退化的重要原因。建议在岩溶地区的水文地质和环境地质工作中重视交互带,探索交互带的探测和监测技术,通过有效管理改善交互带的环境功能。

     

  • [1] Dahm C N, Valett H M, Baxter C V, et al. Hyporheic Zones. In: Hauer F R and Lamberti G A, eds. Methods in Stream Ecology [M]. Burlington, MA,USA: Academic Presss, Elsevier Inc., 2007:119-142.
    [2] Boulton A J, Findlay S, Marmonier P, et al. The functional significance of the hyporheic zone in streams and rivers [J]. Annual Review of Ecology and Systematics, 1998, 29(29): 59- 81.
    [3] Triska F J, Kennedy V C, Avanzino R J, et al. Retention and transport of nutrients in a third-order stream in northwestern Clifornia: hyporheic processes [J]. Ecology, 1989, 70(6): 1893.
    [4] Fox G A, Durnford D S. Unsaturated hyporheic zone flow in stream/aquifer conjunctive systems [J]. Advances in Water Resources, 2003,26(9):989-1000.
    [5] Vervier P, Gibert J, Marmonier P, et al. A perspective on the permeability of the surface freshwater-groundwater ecotone [J]. Journal of the North American Benthological Society, 1992, 11(1): 93-102.
    [6] Brunke M, Gonser T. The ecological significance of exchange processes between rivers and groundwater [J]. Freshwater Biology, 1997, 37(1):1-33.
    [7] Cardenas M B. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus [J]. Water Resources Research, 2015,51(5):3601-3616.
    [8] Bardini L, Boano F, Cardenas M B, et al. Nutrient cycling in bedform induced hyporheic zones [J]. Geochimica et Cosmochimica Acta,2012, 84(3):47-61.
    [9] Fuller C C,Harvey J W. Reactive uptake of trace metals in the hyporheic zone of a miningcontaminated stream, Pinal Creek, Arizona [J]. Environmental Science &Technology, 2000, 34(7): 1150-1155.
    [10] Weatherill J J, Atashgahi S, Schneidewind U, et al. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential [J]. Water Research, 2018,128: 362-382.
    [11] Bencala K E. Hyporheic zone hydrological processes [J]. Hydrological Processes, 2015,14(15): 2797-2798.
    [12] Cranswick R H, Cook P G, Lamontagne S. Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data [J]. Journal of Hydrology, 2014,519(Part B): 1870-1881.
    [13] McLachlan P J, Chambers J E, Uhlemann S S, et al. Geophysical characterization of the groundwater-surface water interface [J]. Advances in Water Resources,2017,109: 302-319.
    [14] Van I D, Chik A, Jakwerth S, et al. Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system [J]. Science of the Total Environment, 2018,627: 450-461.
    [15] Environment Agency. Using science to creat a better place [R]. The Hyporheic Handbook., Bristol: UK, 2009.
    [16] Epting J, Huggenberger P, Radny D, et al. Spatiotemporal scales of rivergroundwater interaction-The role of local interaction processes and regional groundwater regimes [J]. Science of the Total Environment, 2018, 618:1224-1243.
    [17] Fischer H, Kloep F, Wilzcek S, et al. A River’s Liver-Microbial Processes within the Hyporheic Zone of a Large Lowland River [J]. Biogeochemistry, 2005,76(2):349-371.
    [18] Dogwiler T ,Wicks C. Thermal variations in the hyporheic zone of a karst stream [J]. Speleogenesis and Evolution of Karst Aquifers, 2005, 3 (1):2.
    [19] Rugel K, Golladay S W, Jackson C R, et al. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, Southwestern Georgia, USA [J]. Journal of Hydrology Regional Studies,2016, 5(5): 1-19.
    [20] Allen D J, Darling W G, Gooddy D C, et al. Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK [J]. Hydrogeology Journal, 2010,18(5): 1125-1141.
    [21] New Mexico Water Resources Research Institute. 2011 Annual Technical Report [R]. Las Cruces, New Mexico, USA: NM WRRI, 2011.
    [22] Wilson J L. Karst conduit-matrix exchange and the karst hyporheic zone [C]//Karst waters institute & National cave and karst research institute. Abstract of Symposium on Carbon and Boundaries in karst. Carlsbad, New Mexico, USA: Karst waters institute & National cave and karst research institute, 2013:44.
    [23] 蒲俊兵, 袁道先. Karst Hyporheic Zone及其研究进展[J]. 中国岩溶, 2013, 32(1):7-13.
    [24] 郭芳.岩溶洞穴交互带的环境功能特征及其形成机制 [D].西安:长安大学,2017.
    [25] 广西壮族自治区地质调查院.广西重点岩溶地区水文地质及环境地质调查报告(武鸣岩溶盆地) [R].地质调查项目成果报告,2010.
    [26] 姜光辉,郭芳.利用GIS水化学和同位素方法判断灵水来源 [J].水资源保护,2012,28(1):59-63.
    [27] Gandy C J, Smith J W N, Jarvis A P. Attenuation of mining-derived pollutants in the hyporheic zone: A review [J]. Science of the Total Environment,2007,373(2):435-446.
    [28] Environment Agency. Groundwater-surface water interactions in the hyporheic zone [R]. Science Report SC030155/SR1, Bristol: UK, 2005.
    [29] Guo F, Jiang G H, Polk J, et al. Resilience of groundwater impacted by land use and climate change in a karst aquifer, South China [J]. Water Environment Research,2015,87(11):1990-1998.
    [30] 王立新, 吴国荣, 王建安,等. 黑藻(Hydrilla verticillata)对铜绿微囊藻(Microcystis aeruginosa)抑制作用 [J]. 湖泊科学, 2004,16(4):337-342.
    [31] Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components [J]. Hydrobiologia, 1990, 200-201(1):367-377.
  • 加载中
计量
  • 文章访问数:  1827
  • HTML浏览量:  617
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 发布日期:  2019-02-25

目录

    /

    返回文章
    返回