Characteristics of open cave environment and its influencing factors:A case study of Liangfeng cave, Guilin
-
摘要: 通过对桂林凉风洞洞穴内、外温湿度、pCO2进行连续高频监测,发现洞穴温度受大气度温影响呈现出季节性变化规律。由于受到洞穴结构的阻隔作用影响,洞穴由外向里的温度变化幅度逐渐变小,并且响应的时间存在季节性差异。监测数据表明:洞穴内部温度的季节性变化幅度明显低于洞外气温变化幅度。比较洞内、外温度的时间序列发现,在季节尺度上洞穴温度升温阶段滞后时间长(与外部通风的气温流动交换慢),降温阶段滞后时间短(与外部通风的气温流动交换快,呈现突变特征),这可能与不同季节洞穴内部结构的“缓冲作用”的强弱变化有关。该洞穴空气中pCO2存在明显的夏季高、冬季低的季节性变化特征。并且外界大气环境季节性变化和洞穴上覆动植物的季节性活动,使得洞穴pCO2主控因素也存在季节性差异。Abstract: By continuous high-frequency monitoring of the internal and external temperature, humidity and pCO2 in the Liangfeng cave of Guilin, it is found that the temperature of the cave is seasonally changed under the influence of atmosphere temperature. However, due to "buffering effect" in the cave, the range of temperature change decreases with the cave depths from the outside to the inside, and its response time varies with season. The analysis of monitoring data indicated that the seasonal variation of temperature inside the cave is significantly lower than that outside the cave. By comparing the time series of temperature inside and outside of the cave, it is found that the temperature of the cave shows a longer lag time with the increase of atmospheric temperature and a shorter lag time with the decrease of atmospheric temperature at the seasonal timescale. This difference may be affected by the "buffering effect" of the internal structure of the cave in different seasons. The pCO2 in this cave has obvious seasonal variation characteristics of high in summer and low in winter. Moreover, seasonal changes in the external atmospheric environment and seasonal activities of the animals and plants on the caves have also caused seasonal variations in the main controlling factors of pCO2 in the caves.
-
Key words:
- cave temperature /
- cave humidity /
- cave carbon dioxide /
- seasonal variation
-
[1] Hansen M, Scholz D, Froeschmann M L, et al. Carbon isotope exchange between gaseous CO2, and thin solution films: Artificial cave experiments and a complete diffusion-reaction model[J]. Geochimica Et Cosmochimica Acta, 2017, 211:28-47. [2] Ma?a Suri?, Robert Lon?ari?, Neven Bo?i?, et al. Monitoring of selected caves as a prerequisite for the speleothem-based reconstruction of the Quaternary environment in Croatia[J]. Quaternary International.2017.(http://dx.doi.org/10.1016/j.quaint.2017.06.042) [3] Laurent S Devriendt, James M Watkins, Helen V, et al. Oxygen isotope fractionation in the CaCO3-DIC-H2O system[J]. Geochimica Et Cosmochimica Acta, 2017.(http://dx.doi.org/10.1016/j.gca.2017.06.022) [4] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth Science Reviews, 2006, 75(1-4):105-153. [5] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6):449-468. [6] Fairchild I J, Tuckwell G W, Baker A, et al. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies[J]. Journal of Hydrology, 2006, 321(1-4):213-231. [7] Dulinski M, Rozanski K. Formation of13C/12C isotope ratios in speleothems: A semi-dynamic model[J]. Radiocarbon, 1990, 32 (1) : 7-16. [8] Rudzka D, McDermott F, Baldini L M, et al. The coupled δ13C radiocarbon systematics of three Late Glacial / early Holocene speleothems: Insights into soil and cave processes at climatic transitions[J]. Geochimico et Cosmochimica Acta,2011,75(15):4321-4339. [9] Mcdermott F. Palaeo-climate reconstruction from stable isotope variations in speleothem: a review[J]. Quaternary Science Reviews, 2004, 23(7):901-918. [10] 张鹤峤, 蔡演军, 张海伟,等. 神农宫和祥龙洞洞温季节变化特征及其对石笋氧同位素组成的可能影响[J]. 中国岩溶, 2014, 33(3):363-372. [11] 何璐瑶, 胡超涌, 曹振华,等. 湖北清江和尚洞洞穴温度对气候变化的响应[J]. 中国岩溶, 2008, 27(3):273-277. [12] Luo W, Wang S, Zeng G, et al. Daily response of drip water isotopes to precipitation in Liangfeng Cave, Guizhou Province, SW China[J]. Quaternary International, 2014, 349:153-158. [13] Gunn J. Karst Hydrology and Physical Speleology by A. B GLI[J]. 1980, 18(1):100-101. [14] Troester J W, White W B. Seasonal Fluctuations in the Carbon Dioxide Partial Pressure in a Cave Atmosphere[J]. Water Resources Research, 1984, 20(1):153-156. [15] 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26):2174-2180. [16] Penélope S O, Marilyn R, Sergio S M, et al. Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives[J]. Agricultural & Forest Meteorology, 2010, 150(3):321-329. [17] Banner J L, Guilfoyle A, James E W, et al. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A.[J]. Journal of Sedimentary Research, 2011, 77(7-8):615-622. [18] Sp?tl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica Et Cosmochimica Acta, 2005, 69(10):2451-2468. [19] Frisia S, Fairchild I J, Fohlmeister J,et al. Carbon mass-balancemodelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta,2011,75 (2):380-400. [20] Luo W, Wang S, Zeng G, et al. Daily response of drip water isotopes to precipitation in Liangfeng Cave, Guizhou Province, SW China[J]. Quaternary International, 2014, 349:153-158. [21] 贺海波, 汤静, 刘淑华,等. 川东北楼房洞洞穴环境时空变化与影响因素[J]. 热带地理, 2014, 34(5):696-703. [22] 蒲俊兵, 袁道先, 蒋勇军,等. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 2010, 21(5):628-636. [23] 班凤梅, 蔡炳贵. 北京石花洞空气环境主要因子季节性变化特征研究[J]. 中国岩溶, 2011, 30(2):132-137. [24] 张美良, 朱晓燕, 林玉石,等. 桂林盘龙洞滴水的物理化学指标变化研究及其意义[J]. 地球与环境, 2009, 37(1):1-10. [25] 张萍, 杨琰, 孙喆,等. 河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较[J]. 环境科学, 2017, 38(1):60-69. [26] 潘艳喜, 周忠发, 李坡,等. 旅游洞穴空气环境时空变化特征及其影响因素:以贵州省绥阳大风洞为例[J]. 中国岩溶, 2016, 35(4):425-431. [27] 黄黎英.毛村土壤溶解有机碳的季节变化及环境效应[D].桂林:广西师范大学, 2006. [28] 吴夏, 朱晓燕, 张美良,等. 桂林岩溶表层带土壤CO2体积分数时空变化规律及其意义[J]. 生态环境学报, 2012, 21(5):834-839. [29] Banner J L, Guilfoyle A, James E W, et al. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A.[J]. Journal of Sedimentary Research, 2007, 77(7-8):615-622. [30] 张蔷, 赵淑艳, 赵习方. 北京石花洞CO2的监测与评价[J]. 中国岩溶, 1997,16(4):325-331. [31] 蔡炳贵, 沈凛梅, 郑伟,等. 本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶, 2009, 28(4):348-354.
点击查看大图
计量
- 文章访问数: 1980
- HTML浏览量: 616
- PDF下载量: 446
- 被引次数: 0