Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China
-
摘要: 通过采集南宁市郊农田中玉米、蔬菜、水稻可食部分及其根系土150组,研究重金属元素在不同土壤-农作物系统中迁移特征及其影响因素,结果表明:根系土中Hg、Cd、Cr、Cu、Ni、Pb、Zn平均含量分别为0.116、0.202、56.76、22.12、14.49、25.18和56.28 mg·kg-1。农作物对应平均含量分别为0.001 1、0.037、0.054、1.153、0.205、0.011和9.37 mg·kg-1。根系土富集因子表明Cd受到不同程度人为活动影响,Cr和Ni主要受地质背景控制;不同作物系统元素富集因子表明Pb在土壤-农作物系统中迁移能力最低,Zn迁移能力最强。Cd、Cr、Cu、Ni、Pb和Zn在土壤-水稻系统重迁移能力显著高于蔬菜和玉米。根系土中pH、CaO、有机质、Fe2O3、K2O、MgO与重金生物富集系数呈显著性负相关,但在土壤-叶类蔬菜系统中根系土中K2O、MgO与Hg生物富集系数呈显著正相关。Abstract: A total of 150 pairs of concentrations of Hg、Cd、Cr、Cu、Ni、Pb and Zn in the soils、grains of rice、vegetable and corn were determined in peri-urban agricultural soils of Nanning.The results indicated the mean soil concentrations of Hg、Cd、Cr、Cu、Ni、Pb and Zn were 0.116、0.202、56.76、22.12、14.49、25.18、56.28 μg·g-1,respectively.The mean concetrations of six heavy metals in crops were 0.001 1、0.037、0.054、1.153、0.205、0.011 and 9.37 μg·g-1,respectively.Enrichment factor showed that Cd is mainly originated from human sorce;whereas Cr and Ni were controlled by natural sources.Transfer ability of Pb is lower than other metals while transfer ability of Zn is higher than other metals. Transfer ability of As、Cd、Cr、Cu、Ni、Pb、Zn in soil-rice system was stronger than those in soil-vegetable and corn systems. Soil pH 、CaO、total organic matter、Fe2O3、K2O and MgO were major factors influencing metal transfer from soil to crops, whereas soil K2O and MgO contents presented a negative effect on heavy metal mobility in leafed vegetable cultivation systems.
-
Key words:
- agricultural soils /
- heavy metal /
- element migration /
- crop /
- Nanning City
-
[1] 张桃林. 科学认识和防治耕地土壤重金属污染[J]. 土壤,2015,47(3):435-439. [2] Chen H, Yuan X, Li T, et al. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China[J]. Ecotoxicology and Environmental Safety, 2016,126:193-201. [3] Tóth G, Hermann T, Da Silva M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016,88:299-309. [4] Ding C, Ma Y, Li X, et al. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables[J]. Journal of Hazardous Materials, 2016,303:21-27. [5] Al Mamun S, Chanson G, Muliadi, et al. Municipal composts reduce the transfer of Cd from soil to vegetables[J]. Environmental Pollution, 2016,213:8-15. [6] Guala S D, Vega F A, Covelo E F. The dynamics of heavy metals in plant-soil interactions[J]. Ecological Modelling, 2010,221(8):1148-1152. [7] Li W, Xu B, Song Q, et al. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China[J]. Science of The Total Environment, 2014,472:407-420. [8] Zhang X, Zhong T, Liu L, et al. Impact of Soil Heavy Metal Pollution on Food Safety in China[J]. PLOS ONE, 2015,10(8):e135182. [9] 朱立新, 马生明, 王之峰, 等. 平原区多目标地球化学调查异常查证及生态效应评价方法[J]. 中国地质, 2004,31(4):431-435. [10] 朱立新, 马生明, 王之峰, 等. 沿海冲积平原区土壤中元素含量特征及其影响因素研究[J]. 地质与勘探, 2003,39(1):45-49. [11] 陈红燕, 袁旭音, 李天元, 等. 不同污染源对水稻土及水稻籽粒的重金属污染研究[J]. 农业环境科学学报,2016,35(4):684-690. [12] 豆长明, 徐德聪, 周晓铁, 等. 铜陵矿区周边土壤蔬菜系统中重金属的转移特征[J]. 农业环境科学学报, 2014,33(5):920-927. [13] 朱丹尼, 邹胜章, 周长松, 等. 岩溶区典型土壤对Cd2+的吸附特性[J]. 中国岩溶, 2015,34(4):402-409. [14] 谌金吾, 孙一铭, 杨占南, 等. 三峡库区云阳消落带土壤重金属形态及其在植物中的富集和转移[J]. 中国岩溶, 2012,31(4):415-422. [15] 黄碧燕, 韦宇宁. 广西南宁市郊区土壤及其农副产品重金属污染状况监测与评价[J]. 农业环境与发展, 2000,17(4):20-22. [16] 秦波, 白厚义, 陈秀娟, 等. 南宁市郊菜园土壤重金属污染评价[J]. 农业环境科学学报, 2006,25(S1):45-47. [17] 孔德工, 唐其展, 田忠孝, 等. 南宁市蔬菜基地土壤重金属含量及评价[J]. 土壤, 2004,36(1):21-24. [18] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014,21(3):265-306. [19] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. [20] Gu Y, Wang Z, Lu S, et al. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China[J]. Environmental Pollution, 2012,163(4):248-255. [21] Zhang L, Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Marine Pollution Bulletin, 2007,54(7):974-982. [22] Gu Y, Gao Y, Lin Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou[J]. Applied Geochemistry, 2016,67:52-58. [23] 张伯尧. 兰州市菜地土壤和蔬菜重金属含量及其健康风险评估[D]. 甘肃农业大学生态学, 2009. [24] 陈志良, 黄玲, 周存宇, 等. 广州市蔬菜中重金属污染特征研究与评价[J]. 环境科学, 2017,38(1):389-398. [25] Welch R M, Norvell W A. Mechanisms of Cadmium Uptake, Translocation and Deposition in Plants[M]. Springer Netherlands, 1999. [26] Nan Z, Li J, Zhang J, et al. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J]. Science of the Total Environment, 2002,285(1):187-195. [27] Turan M, Esringü A. Phytoremediation Based on Canola (Brassica napus L.) and Indian Mustard (Brassica juncea L.) Planted on Spiked Soil by Aliquot Amount of Cd, Cu, Pb, and Zn[J]. Plant Soil & Environment, 2007,53(1):7-15. [28] Cui L, Feng X, Lin C J, et al. Accumulation and translocation of 198Hg in four crop species[J]. Environmental Toxicology & Chemistry, 2014,33(2):334-340. [29] Guan G, Song X U. The Regularity of distribution, change and migration of heavy metals in soil-rice plant system[J]. Ecology & Environment, 2006,15(2):315-318. [30] 李玉会. 外源Cr(Ⅲ)在长期不同施肥摟土中的形态转化及作物吸收[D]. 杨凌:西北农林科技大学, 2014. [31] Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011,159(1):84-91. [32] Laing G D, Vos R D, Vandecasteele B, et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary[J]. Estuarine Coastal & Shelf Science, 2008,77(4):589-602. [33] Laing G D, Rinklebe J, Vandecasteele B, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review[J]. Science of the Total Environment, 2009,407(13):3972-3985. [34] Du L G, Vanthuyne D R, Vandecasteele B, et al. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil[J]. Environmental Pollution, 2007,147(3):615-625. [35] Papafilippaki A, Gasparatos D, Haidouti C, et al. Total and bioavailable forms of Cu, Zn, Pb and Cr in agricultural soils: A study from the hydrological basin of Keritis, Chania, Greece[J]. Global Nest Journal, 2007,9(3):201-206.
点击查看大图
计量
- 文章访问数: 2172
- HTML浏览量: 657
- PDF下载量: 742
- 被引次数: 0