Distribution characteristics of silicon, iron and aluminum in lime soil profile in karst mountainous areas: A case study of Qinglong county, Guizhou Province
-
摘要: 选取贵州省晴隆县岩溶山区石灰土剖面土壤为研究对象,采用土壤学常规测定方法对土壤硅、铁、铝全量及风化度指标进行研究,初步分析了研究区石灰土剖面硅、铁、铝元素含量和分布特征。结果表明:区内土壤质地较黏,应进行土壤改良;土壤中氮、磷流失严重,需加强秸秆还地和增施有机肥;其硅、铁、铝元素含量较高,但主要以矿物态形式存在,受成土要素与环境的制约导致土壤脱硅富铁铝化程度较低,土壤剖面缺乏过渡层,由降雨冲刷易造成水土流失和加剧石漠化,应采取工程和自然保护措施防治植被覆盖减少和生态恶化。Abstract: The study site is located in Liancheng town, Qinglong county, Guizhou Province, an area with highly developed karst landforms dominated by mountainous lands. The area belongs to plateau subtropical monsoon climate with an average elevation of 1,442 m, annual precipitation of 1,500 to 1,650 mm, annual average temperature of 14 ℃, and frost-free period of about 320 d. The hilly area is dominated by limestone soils, with dominant vegetation species of fir and eucalyptus trees. This paper aims to understand the changes of silicon, iron and aluminum contents and the characteristics of weathering development through studying the limestone soil profile, which provide references for soil fertilization and associated improvement in the karst mountain areas. The mineral elements determination method (triacid digestion-atomic absorption spectrophotometry and aluminum reagent colorimetry and silicon-molybdenum blue colorimetry methods) and soil oxide determination method (sodium disulfite-sodium citrate-sodium bicarbonate method, acidic ammounium oxalate method and sodium pyrophosphate extraction-atomic absorption spectrophotometry ) were used to analyze the contents and variation characteristics of silicon, iron and aluminum elements. The results show that the content of silicon, iron and aluminum in karst mountain areas of Qinglong county is in the order of silicon>aluminum>iron, and the content of iron oxide is in the form of free state>amorphous state>complexation state. The conclusion is that the content of silicon, iron and aluminum in the soil profile of karst mountainous area in Qinglong county is higher, and mainly exists in the form of minerals. The constraints of soil formation factors and the environment resulting in low degree of desiliconization and iron aluminization in soil, slow accumulation of soil, lack of transition layers in soil profile and etc. all cause soil erosion and rocky desertification. Engineering and natural protection measures should be taken to prevent and control the vegetation cover reduction and ecological deterioration. Soil iron oxide is also an important indicator of weathering process, and the study of different forms of iron oxide can be conducted to understand the morphological and environmental behaviors of iron, which will assist in the study of soil development and soil environment in karst mountainous areas.
-
Key words:
- karst mountain areas /
- lime soil /
- silicon /
- iron and aluminum /
- soil iron oxide
-
[1] 王金乐. 贵州喀斯特石漠化地区荒地土壤理化性质及环境效应研究[D]. 贵阳: 贵州大学, 2008. [2] 于扬, 杜虎, 宋同清, 等. 喀斯特峰丛洼地不同生态系统的土壤肥力变化特征[J]. 生态学报, 2013, 33 (23): 7455-7466. [3] 谭秋锦, 宋同清, 曾馥平, 等. 峡谷型喀斯特不同生态系统土壤养分及其生态化学计量特征[J]. 农业现代化研究, 2014, 35(2): 225-228. [4] 李安定, 郭春艳, 符裕红, 等. 贵州喀斯特峰丛洼地石漠化区土壤物理特征时空分异[J]. 中国岩溶, 2017, 36(2): 202-206. [5] 宁婧. 贵州喀斯特生态环境石灰土发生特征与诊断特性的研究[D]. 贵阳: 贵州大学, 2009. [6] 杨柳, 何腾兵, 舒英格, 等. 贵州喀斯特区草地生态条件下石灰(岩)土的发生特性及系统分类研究[J]. 中国岩溶, 2011, 30(1): 93-99. [7] 梁建宏, 曹建华, 杨慧, 等. 钙、铁、铝形态对岩溶石灰土磷有效性的影响[J]. 中国岩溶, 2016, 35(2): 211-217. [8] 陈超, 杨丰, 赵丽丽, 等. 贵州省不同土地利用方式对土壤理化性质及其有效性的影响[J]. 草地学报, 2014, 22(5): 1008-1013. [9] 贾申, 喻理飞. 喀斯特石漠化区石灰岩与白云岩土壤理化性质分析:以贵州兴义市为例[J]. 贵州科学, 2010, 28(3): 29-33. [10] 董玲玲, 何腾兵, 刘元生, 等. 喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J]. 土壤通报, 2008, 39(3): 471-474. [11] 刘文景, 涂成龙, 郎赟超, 等. 喀斯特地区黄壤和石灰土剖面化学组成变化与风化成土过程[J]. 贵州科学, 2010, 38(3): 271-279. [12] 韩美荣, 宋同清, 彭晚霞, 等. 喀斯特峰丛洼地土壤矿物质的组成特征与作用[J]. 应用生态学报, 2012, 23(3): 685-693. [13] 宋照亮. 喀斯特流域风化成土作用及其矿质元素行为与环境质量[D]. 贵阳: 中国科学院地球化学研究所, 2006. [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版, 1999: 60-73. [15] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2011: 148-179. [16] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 156. [17] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 118-119. [18] Jenny H. Factors of soil formation [J]. New York: McGraw Hill,1941:50-125. [19] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982(299):715-717. [20] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 北京: 中国农业出版社, 2014: 161-165. [21] 常庆瑞, 冯立孝, 阎湘. 陕西汉中土壤氧化铁及其发生学意义研究[J]. 土壤通报, 1999, 30(1): 14-16. [22] 张治伟,朱章雄,傅瓦利,等.岩溶山地土壤氧化铁形态及其与成土环境的关系[J].环境科学,2012,33(6):2013-2020. [23] 徐德福,黎成厚.氧化铁和有机质对土壤有机无机复合状况的影响[J].贵州大学学报(农业与生物科学版),2002, 21(6):397-403. [24] 王秋兵,李岩,韩春兰,等.宽甸盆地火山喷出物发育土壤特性研究[J].土壤通报,2013,44(2):258-265. [25] 冯连君,储雪蕾,张启瑞,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544. [26] 王薇,黄景,银秋玲.广西大明山垂直带土壤理化性质及其系统分类[J].浙江农业科学,2016,57(9):1548-1554.
点击查看大图
计量
- 文章访问数: 1966
- HTML浏览量: 640
- PDF下载量: 655
- 被引次数: 0