Distribution, transportation and accumulation of mineral elements in a rock-soil-plant system of Phyllostachys glauca in limestone mountains
-
摘要: 本研究以石灰岩山地淡竹林为研究对象,测定了岩石、土壤和4种淡竹群落植物[优势种淡竹(Phyllostachys glauca),伴生种枸骨(Ilex cornuta)、油茶(Camellia oleifera)和胡颓子(Elaeagnus pungens)]的N、P、K、Ca、Mg、Fe、Al、Mn和Na等9种元素含量,对元素迁移积聚特征进行了分析,结果表明:(1)淡竹林石灰岩Ca含量高(363.09 g· kg-1);土壤Ca含量下降至2.68 g·kg-1,Fe、Al含量升高(48.12 g·kg-1、84.00 g·kg-1);与土壤相比,植物N、P和Ca含量上升,其他元素含量则降低;(2)从岩石到土壤,Ca为纯迁移,迁移积累系数仅为0.01;Fe和Al明显富集,迁移积累系数分别高达9.98和14.10;从土壤到植物,N、Ca、P为富集,Fe、Al生物吸收系数很低,仅为1.41和2.08;(3)除K外,群落优势种淡竹的元素含量和生物吸收系数均小于伴生种。研究发现,强淋溶作用下淡竹林石灰岩发育为酸性红石灰土,其生长的植物均非喜钙植物;“岩石—土壤—植物”元素迁聚特征因土壤发育过程和植物种间特征而异,红石灰土Ca积累少;淡竹对土壤元素需求少可能是其在石灰岩生境占据竞争优势的生理基础。Abstract: Discerning the transportation and accumulation of mineral elements in rock-soil-plant systems permits to guide the vegetation restoration in karst ecosystems. Rock, soil and four plant species including one dominant species Phyllostachys glauca, three auxiliary species Elaeagnus pungens, Camellia oleifera and Ilex cornutawere sampled in limestone mountains of Ruichang city, Jiangxi Province, China. Nine mineral elements (N, P, K, Ca, Mg, Fe, Al, Mn, Na) were determined for the rock, soil and plant samples, and the characteristics of transportation and accumulation of these elements were analyzed. The results show that(1) the limestone in the Ph. glauca forest is high in Ca concentration (363.09 g· kg-1); the soil concentration of Ca (2.68 g·kg-1) and Mg (5.94 g· kg-1) are low, while the concentrations of Fe and Al are high with the values of 48.12 g· kg-1and 84.00 g· kg-1, respectively. The content of N, P and Ca in plant is higher than that in soil, the vice verse for other elements. (2) From rock to soil, Ca is largely lost by leaching with a transport coefficient of 0.01, while other elements are all accumulated. Fe and Al are in the top of transport coefficient rank with values of 9.98 and 14.10, respectively. From soil to plant, only N, Ca and P are accumulated in plants, and the content of other elements in plants is lower than that of in soil. The bio absorption coefficients of Fe and Al are very low with values of 1.41 and 2.08, respectively. (3) The element concentration and biological absorption coefficients of Ph. glauca are lower than that of three auxiliary species with the exception of element K. It indicates that limestone has developed into terra rossa under strong leaching. The four species growing in the terra rossa are all not calciphytes. The transportation and accumulation of mineral elements in the rock-soil-plant system change the different soil formation processes and plant species. Less element absorption of Ph. glauca may be the physiological basis for its domination in the limestone habitat.
-
Key words:
- karst /
- rocky desertification /
- community composition /
- leaching /
- biological absorption
-
[1] 宋同清,彭晚霞,杜虎,等.中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J].生态学报,2014,34(18):5328-5341. [2] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10): 991-999. [3] 樊燕, 黎祖尧, 范承芳, 等. 石灰岩山地淡竹林演替序列的群落物种多样性[J]. 生态学杂志, 2014, 33(12): 3238-3244. [4] 许兆然. 中国南部石灰岩地区生物保护和综合治理生态村模式[J].广西植物, 1996, 16(1): 48-55. [5] 李阳兵, 谭秋, 王世杰. 喀斯特石漠化研究现状、问题分析与基本构架[J]. 中国水土保持科学, 2005, 3(3): 27-34. [6] 宁晓波, 项文化, 方晰, 等. 贵阳花溪石灰岩、石灰土与定居植物化学元素含量特征[J]. 林业科学, 2009, 45(5): 34-41. [7] 陈文德, 彭培好, 李贤伟, 等. 岩-土-植系统中重金属元素的迁聚规律研究[J]. 土壤通报, 2009, 40(2): 369-373. [8] Teste F P, Kardol P, Turner B L, et al. Plantsoil feedback and the maintenance of diversity in Mediterranean-climate shrublands[J]. Science, 2017, 355(6321): 173-176. [9] He W M, Shen Y, Cornelssen J H C. Soil nutrient patchiness and plant genotypes interact on the production potential and decomposition of root and shoot litter: evidence from short-term laboratory experiments with Triticum aestivum [J]. Plant and Soil,2012, 353(1-2):145-154. [10] 莫源富, 奚小双, 陈忠将. 岩石-土壤-植被(红背山麻杆、裸花紫珠)间的元素迁移:以广西巴马岩溶石山地区为例[J]. 中国岩溶, 2010, 29(4): 440-444. [11] 刘锡辉, 秦新生, 梁同军, 等. 石灰岩特有植物圆叶乌桕土壤与叶片化学元素含量特征[J]. 西南农业学报, 2013, 26(3): 1195-1200. [12] 陈松, 桂和荣, 孙林华. 安徽宿州地区石灰岩-土壤元素迁移及质量评价[J]. 环境化学, 2013, 32(6): 987-992. [13] 陈武, 任明强, 芦正艳, 等. 贵州典型喀斯特区土壤地球化学特征研究[J]. 中国岩溶, 2010, 29(3): 246-252. [14] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[J]. Functional Ecology, 2002, 16(5): 545-556. [15] 杜天真, 黎祖尧, 杨光耀, 等. 石灰岩地区淡竹立地条件研究[J]. 江西农业大学学报, 1994, 16(1): 82-87. [16] 黎祖尧, 杨光耀, 杜天真, 等. 石灰岩土壤特点及对淡竹的影响[J]. 竹子研究汇刊, 1997, 16(2): 49-52. [17] 彼列尔曼A И.后生地球化学[M].北京:科学出版社,1975. [18] 龚子同. 土壤圈生命元素的空间分异及其生态效应 [M]//中国科学院土壤圈物质循环开放研究实验室. 土壤圈物质循环研究导向会论文集[C]. 1989. [19] 蒋忠诚. 广西弄拉白云岩环境元素的岩溶地球化学迁移[J]. 中国岩溶, 1997, 16(4): 304-312. [20] 李景阳, 王朝富, 樊廷章. 试论碳酸盐岩风化壳与喀斯特成土作用[J]. 中国岩溶, 1991, 10(1): 32-41. [21] 袁红, 谢红霞, 罗兰芳, 等. 南方石灰岩土壤发生特性和系统分类研究[J]. 中国农学通报, 2016, 32(21): 124128. [22] 温琰茂, 曾水泉, 潘树荣, 等. 中国东部石灰岩土壤元素含量分异规律研究[J]. 地理科学, 1994, 14(1): 16-21. [23] 周运超. 贵州喀斯特植被主要营养元素含量分析[J]. 贵州农学院学报, 1997, 16(1): 11-16. [24] 屠玉麟. 贵州喀斯特灌丛区系与生态特征分析[J]. 贵州师范大学学报(自然科学版), 1995, 13(3): 1-8. [25] Harpole W S, Ngai J T, Cleland E E, et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862. [26] Chapin III F S, Vitousek P M, Cleve K V. The Nature of Nutrient Limitation in Plant Communities[J]. The American Naturalist, 1986, 127(1): 48-58. [27] 姚元涛,陶吉寒,宋鲁彬,等.钙、锰、铝及与硼的协同胁迫对茶树的毒害效应[J].植物生理学报,2015,51(11):1867-1872.
点击查看大图
计量
- 文章访问数: 1877
- HTML浏览量: 684
- PDF下载量: 628
- 被引次数: 0