Spatial variation analysis of soil carbon, nitrogen and phosphorus eco-stoichiometric ratios in karst and non-karst areas of Guangnan county, Yunnan, China
-
摘要: 借助1∶25万云南省广南县幅土壤地球化学调查数据,并利用单因素方差分析、多重比较法以及地统计学方法,对岩溶区和非岩溶区土壤碳氮磷生态化学计量特征及其空间分布进行了对比分析。结果显示:广南县幅岩溶区土壤中有机碳(SOC)、全氮(TN)、全磷(TP)含量显著高于非岩溶区,而碳氮比(C∶N)、碳磷比(C∶P)、氮磷比(N∶P)显著低于非岩溶区;无论是岩溶区还是非岩溶区,表层(0~20 cm)SOC、TN、C∶N、C∶P、N∶P均显著高于深层(>100 cm)。克里格空间插值结果表明,研究区表层土壤中SOC、TN、TP含量具有东高西低的特征,而C∶N、C∶P、N∶P具有低值区集中于东部、高值区散布在西部的空间分布格局。成土母质和土壤类型等自然因素严重制约了研究区土壤碳氮磷的空间变异,同时土地利用变化等人为因素也起到了不可忽视的作用。Abstract: The ratio of soil carbon, nitrogen and phosphorus is an important indicator of soil organic matter composition and quality. However, soil has a high degree of spatial heterogeneity. In karst areas, the composition of soil geochemical elements is special, the ecological environment is vulnerable, and the natural environment is vignificantly different from non-karst areas. Therefore, it is necessary to understand spatial and temporal distributions and the migration mechanism of essential elements, such as carbon, nitrogen and phosphorus, for vegetation growth in the soils of both karst areas and non-karst areas. The study area of current study is located in Guangnan county, Yunnan Province, where karst areas account for 197.52 km2 and non-karst areas for 205.39 km2. The soil composition data for 102 surface composite soil samples and 24 deep composite soil samples were obtained from the soil geochemical survey on the scale of 1∶250,000. In this paper, one-way ANOVA, multiple comparison analysis and geostatistical method were utilized to compare the characteristics of soil carbon, nitrogen and phosphorus eco-stoichiometry and spatial variability between karst areas and non-karst areas, so as to explore the possible factors leading to this spatial variability and provide a reliable basis for ecological environment management and soil remediation. The results showed that in general, the contents of soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) in the karst area were significantly higher than those in the non-karst area, while the carbon to nitrogen ratio(C∶N) , carbon to phosphorus ratio(C∶P) and nitrogen to phosphorus ratio(N∶P) were significantly lower than non-karst area. Whether in karst areas or in non-karst areas, the content of SOC, TN and the C∶N, C∶P, N∶P ratio in the surface soil (0-20 cm) were significantly higher than those in the deep soil (>100 cm). Kriging interpolation results indicated that the contents of SOC, TN, TP in the surface soil were characterized by low in west and high in east of the study area; while the C∶N, C∶P, N∶P had a spatial distribution pattern of low values concentrated in the east and high values scattered in the west. In addition, there were differences in nutrient contents among different soil types, with the highest content of SOC, TN and TP in yellow-purple-mud soil and the lowest content of them in acid yellow-red soil. Natural factors, such as pedogenic parent rocks and soil types, have seriously controlled spatial variation of the soil carbon, nitrogen and phosphorus. Meanwhile, anthropic factors, such as land use change, also play an important role, which can not be ignored.
-
Key words:
- soil /
- eco-stoichiometric ratio /
- spatial variation /
- karst and non-karst areas /
- Guangnan
-
[1] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere [M]. Princeton University Press, 2002: 225-226. [2] Urabe J, Sterner R W. Regulation of herbivore growth by the balance of light and nutrients [J]. Proceedings of the National Academy of Sciences, 1996, 93(16): 8465-8469. [3] Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164(2): 243-266. [4] Wang Y P, Law R M, Pak B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere [J]. Biogeosciences, 2010, 7(7): 9891-9944. [5] 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. [6] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. [7] Bui E N, Henderson B L. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors [J]. Plant and soil, 2013, 373(1-2): 553-568. [8] Griffiths B S, Spilles A, Bonkowski M. C∶N∶P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess [J]. Ecological Processes, 2012, 1(1): 1-11. [9] 王政权. 地统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999. [10] 曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30(5): 870-879. [11] 曹祥会, 龙怀玉, 周脚根, 等. 中温-暖温带表土碳氮磷生态化学计量特征的空间变异性:以河北省为例[J]. 生态学报, 2017, 37(18): 6053-6063. [12] 江叶枫, 叶英聪, 郭熙, 等. 江西省耕地土壤氮磷生态化学计量空间变异特征及其影响因素[J]. 土壤学报, 2017, 54(6):1527-1539. [13] 卢同平, 张文翔, 牛洁,等. 典型自然带土壤氮磷化学计量空间分异特征及其驱动因素研究[J]. 土壤学报, 2017, 54(3):681-691. [14] 范永东. 模型选择中的交叉验证方法综述[D]. 太原: 山西大学, 2013. [15] 方学燕, 陈新军, 冯永玖, 等. 基于综合环境因子的协同克里金法分析茎柔鱼资源丰度空间分布[J]. 海洋学报, 2017, 39(2):62-71. [16] 唐夫凯, 周金星, 崔明, 等. 典型岩溶区不同退耕还林地对土壤有机碳和氮素积累的影响[J]. 北京林业大学学报, 2014, 36(2): 44-50. [17] 雷志栋, 杨诗秀, 许志荣, 等. 土壤特性空间变异性初步研究[J]. 水利学报, 1985(9):10-21. [18] Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3):139-151. [19] 张广帅, 邓浩俊, 杜锟, 等. 泥石流频发区山地不同海拔土壤化学计量特征:以云南省小江流域为例[J]. 生态学报, 2016, 36(3): 675-687. [20] 张友,徐刚,高丽,等.黄河三角洲新生湿地土壤碳氮磷分布及其生态化学计量学意义[J].地球与环境,2016,44(6):441-450. [21] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674-4682. [22] 中国科学院南京土壤研究所专刊:土壤专报[M]. 北京:科学出版社, 1980. [23] 曾四满, 刘满强, 陈小云, 等. 岩溶区和碎屑岩区林地和农田土壤氮矿化过程对比研究[J]. 中国岩溶, 2016, 35(3):269-273, 281. [24] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展,2003,18(1):37-44. [25] 李天杰, 赵烨, 张科利, 等. 土壤地理学(第三版) [M]. 北京:高等教育出版社, 2004. [26] 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017,23(2):400-408. [27] 张蕊, 曹静娟, 郭瑞英, 等. 祁连山北坡亚高山草地退耕还林草混合植被对土壤碳氮磷的影响[J]. 生态环境学报, 2014, 23(6):938-944. [28] 张珍明, 林绍霞, 张清海, 等. 不同土地利用方式下草海高原湿地土壤碳、氮、磷分布特征[J]. 水土保持学报, 2013, 27(6): 199-204. [29] 蔡运龙. 土地利用/土地覆被变化研究:寻求新的综合途径[J]. 地理研究, 2001, 20(6): 645-652.
点击查看大图
计量
- 文章访问数: 1941
- HTML浏览量: 597
- PDF下载量: 622
- 被引次数: 0