Influence of grazing on characteristics of chemical metrology for C, N and P in plants and soil of peak-cluster depressions
-
摘要: 以西南典型岩溶峰丛洼地平果石漠化区为研究区,选取受放牧干扰和未受放牧干扰植被样地,开展放牧干扰对植物-土壤C、N、P元素生态化学计量学特征影响的研究。结果显示,(1)6种受放牧干扰样地土壤(0~20 cm)的C、N、P含量均值分别为6.27 %、0.57 %、0.088 %;植物根、茎、叶和凋落物C、N、P含量均值分别为442.15 g·kg-1、8.33 g·kg-1、0.73 g·kg-1。放牧干扰下,植物和土壤C、N、P含量减少,变异系数增大,容易导致石漠化发生和恶化;(2)6种典型样地土壤C∶N、C∶P、N∶P均值分别为10.76、73.94、6.76;植物根、茎、叶和凋落物C∶N、C∶P、N∶P分别为53.62、669.50、12.53。与无放牧干扰样地相比较,受放牧干扰的样地植物和土壤C∶N、C∶P、N∶P化学计量比呈下降趋势,放牧干扰在一定范围内能提高土壤P的有效性,但当N∶P比值减少到一定程度时,植物的生长受N限制。(3)恢复样地的土壤-植被C、N、P及其比值都优于干扰样地,放牧干扰能在短时间内造成环境迅速退化和石漠化的发生和加剧。禁牧后土壤和植物养分能在短时间内得到修复和改善,尤其是草本饲料类植物经短时间自然恢复后得以恢复正常生长发育。(4)在岩溶峰丛洼地石漠化区,土壤和植物的C、N、P、C∶N、C∶P、N∶P关系密切,相互之间具有促进或抑制的作用,共同影响植物的生长发育和石漠化演变方向。Abstract: The study area of this work is the Pinguo rock desertification region is a typical karst peak-cluster depression of southwestern China. Choosing vegetation sites with and without grazing, we examine the influence of grazing on the features of metrology of ecological chemistry for elements C, N, and P in plants and soil. Results show that (1) in six sites with grazing, average contents of C, N and P in the soil (0~20 cm) are 6.27%, 0.57%, and 0.088%, respectively; those in roots, stem, leaf and fallen materials are 442.15 g·kg-1, 8.33 g·kg-1and 0.73 g·kg-1, respectively. It means that due to grazing, contents of C, N and P in plants and soil decrease and variation coefficients become larger, leading to occurrence or deterioration of desertification. (2) The average values of C∶N, C∶P and N∶P at the six sites are 10.76, 73.94 and 6.76, respectively; those in roots, stem, leaf and fallen materials are 53.62, 669.50, and 12.53, respectively. Compared with the sites without grazing, these ratios of chemical metrology at grazed sites tend to decline. To some extent, grazing can enhance effectiveness of P in soil, but the growth of plants will be limited by N when N∶P reduces to a threshold. (3) C, N and P and their ratios in soil and plants at sites without grazing are all better than those at sites with grazing. It implies that in a short time grazing can cause rapid degeneration of the environment and occurrence or acceleration of rock desertification. After grazing is stopped, nutrient in soil and plants can recover in a short time, especially the plants of herbaceous feed can grow normally again. (4) In karst desertification regions of karst peak-cluster depressions, C, N, P, C∶N, C∶P and N∶P are closely related in samples of soil and plants. These variables can promote or suppress between each other, jointly affecting growth and development of plants and evolution trend of desertification in the study area.
-
Key words:
- karst /
- rock desertification /
- C:N /
- C:P /
- N:P /
- metrology of ecological chemistry
-
[1] Legrand H E . Hydrological and ecological problems of karst regions: Hydrological actions on limestone regions cause distinctive ecological problems [J].Science, 1973, 179(4076): 859-864. [2] Wardle D A, Walker L R, Bardgett R D. Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences[J]. Science, 2004, 305(5683):509-513. [3] 曹建华,邓艳,杨慧,等. 喀斯特断陷盆地石漠化演变及治理技术与示范[J].生态学报,2016,36(22):7103-7108. [4] 袁道先,蒋勇军,沈立成,等.现代岩溶学[M].北京:科学出版社,2016:319-335. [5] 中国地质调查局.西南岩溶石漠化综合治理地质调查报告[R].2016. [6] Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration [J].Earth-Science Reviews, 2014, 132:1-12. [7] 蒋忠诚,李先琨,覃小群,等.论岩溶峰丛洼地石漠化的综合治理技术:以广西平果果化示范区为例[J].中国岩溶,2008,27(1):50-55. [8] Cao J H, Yuan D X, Tong L Q,et al. An overview of karst ecosystem in Southwest China: Current state and future management[J]. Journal of Resources & Ecology, 2015, 6(4):247-256. [9] 宋同清,彭晚霞,杜虎,等. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J].生态学报,2014,34(18):5328-5341. [10] 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6. [11] Yang Y H,Mohammat A , Feng J M, et al. Storage, patterns and environmental controls of soil organic carbon in China [J]. Bio, geochemistry, 2007, 84(2):131-141. [12] Wu H B, Guo Z T, Peng C H, et al. Land use induced changes of organic carbon storage in soil of China [J]. Global Change Biology, 2003, 9(3):305-315. [13] 杜家颖,王霖娇,盛茂银,等.喀斯特高原峡谷石漠化生态系统土壤C、N、P生态化学计量学特征[J].四川农业大学学报,2017,35(1):45-51. [14] 杨丹丽,喻阳华,秦仕忆,等.石漠化区不同利用类型土地养分的含量及其生态化学计量特征[J].西南农业学报,2018,31(9):1875-1881. [15] 潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征[J]. 生态学报,2011,31(2):335-343. [16] 董晓玉,傅华,李旭东,等.放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响[J].草业学报,2010,19(2):175-182. [17] 李强,宋彦涛,周道玮,等.围封和放牧对退化盐碱草地土壤碳、氮、磷储量的影响[J].草业科学,2014,31(10):1811-1819. [18] 徐丽丽,于一尊,王克林,等.不同人为干扰方式对桂西北喀斯特草丛群落土壤种子库组成与分布的影响[J].中国岩溶,2008,27(4):309-315. [19] 张瑜,王普昶,莫本田,等.不同放牧强度下贵州喀斯特草地植被空间特征与生产力相关性分析[J].草业与畜牧,2015(4):31-36. [20] 王瑞江,姚长宏,蒋忠诚,等.贵州六盘水石漠化的特点、成因与防治[J].中国岩溶,2001,20(3):211-216. [21] 苏维词,杨华,李晴,等.我国西南喀斯特山区土地石漠化成因及防治[J].土壤通报,2006,37(3):447-451. [22] 李森,魏兴琥,黄金国,等.中国南方岩溶区土地石漠化的成因与过程[J].中国沙漠,2007,27(6):918-926. [23] Hong J T, Wang X D, Wu J B. Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the northern Tibetan Plateau [J]. Plos One, 2014, 9(10):e109052. [24] Hong J T, Wu J B, Wang X D. Effects of grazing and fencing on Stipa purpurea community biomass allocation and carbon, nitrogen and phosphorus pools on the northern Tibet Plateau alphine[J]. Prata cultural Science, 2015,32(11) :1878-1886. [25] 熊坤,金美伶,于婷,等.不同放牧梯度上典型草原植物碳氮磷化学计量特征[J].绿色科技,2015(7):4-7. [26] 蓝芙宁,蒋忠诚,邓艳,等.岩溶峰丛洼地饲料植物元素富集特征研究[J].中国岩溶,2006,25(4):297-307. [27] 鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999. [28] 曾昭霞,王克林,刘孝利,等.桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J].植物生态学报,2015,39(7):682-693. [29] 欧延升,汪霞,李佳,等.不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J].应用与环境生物学报,https://doi.org/10.19675/j.cnki.1006-687x.2018.05005. [30] 刘方,王世杰,刘元生,等.喀斯特石漠化过程土壤质量变化及生态环境影响评价[J].生态学报,2005,25(3):639-644. [31] 闵星星,马玉寿,李世雄,等.羊粪对青海草地早熟禾草地生产力和土壤养分的影响[J].草业科学,2014,31(6):1039-1044.DOI: 10.11829j.issn.1001-0629.2013-0572. [32] 王兴, 宋乃平, 杨新国, 等. 羊粪归还对荒漠草原表层土壤碳氮的影响[J]. 水土保持通报, 2013, 33(5):6-10. [33] Tian H, Chen G, Zhang C, et al. Pattern and Variation of C∶N∶P Ratios in China’S Soils S: A Synthesis of Observational Data[J]. Biogeochemistry,2010, 98(1-3):139-151. [34] 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947. [35] Batjes N H. Total carbon and nitrogen in the soils of the word[J].European Journal of Soil Science,1996,47(2):151-163. [36] 梁月明,李强,潘复静.岩溶区不同恢复阶段檵木根际土壤生态化学计量学特征[J].水土保持通报,2017,37(5):123-127. [37] Tessier J T. Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J].Journal of Applied Ecology,2003,40(3):523-534. [38] 王晓慧,陈远荣.不同放牧方式对岩溶区土壤养分的影响:以广西桂林岩溶区实验基地为例[J].地质通报,2008,27(2):286-291. [39] 吴海勇,彭晚霞,宋同清,等.桂西北喀斯特人为干扰区植被自然恢复与土壤养分变化[J].水土保持学报,2008,22(4):143-147. [40] 黄昌勇.土壤学[M].北京:中国农业出版社,2000:1-311. [41] 李红琴,毛绍娟,祝景彬,等.放牧强度对高寒草甸群落碳氮磷化学计量特征的影响[J].草业科学,2017,34(3):449-455. [42] 蒋忠诚,李先琨,胡宝清,等.广西岩溶山区石漠化及其综合治理研究[M].北京:科学出版社,2011:1-293. [43] 蒋忠诚,李先琨,曾馥平,等.岩溶峰丛洼地生态重建[M].北京:地质出版社,2007:1-151. [44] 曹建华.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社,2005:1-188.
点击查看大图
计量
- 文章访问数: 1664
- HTML浏览量: 564
- PDF下载量: 536
- 被引次数: 0