Effects of rocky desertification control on CO2,CH4 variation and carbon sink in soil
-
摘要: 为探究石漠化治理对土壤中CO2、CH4变化特征及碳汇效应的影响,采用气相色谱法对重庆市南川石漠化治理示范区土壤中CO2、CH4浓度进行观测,结合土壤温度、土壤含水率、土壤容重和土壤有机碳对石漠化治理区(试验区)和对比区(未经过石漠化治理的荒草地)进行研究,并用溶蚀量数据估算岩溶区碳汇量。结果显示:土壤中CO2浓度随土壤深度的增加先增加后减小,变化范围为393~7 400 mg·L-1;而土壤中CH4浓度随土壤深度的增加先减小后增大,变化范围为1.13~3.42 mg· L-1。试验区土壤中CO2浓度均值为2 131 mg· L-1,CH4浓度均值为1.94 mg· L-1 ;而对比区土壤中CO2浓度均值为2 338 mg· L-1,CH4浓度均值为2.10 mg·L-1。土壤温度、土壤有机碳与土壤中CO2浓度变化趋势呈显著正相关关系,而与土壤中CH4变化趋势呈显著负相关关系,说明土壤温度和土壤有机碳是影响土壤中CO2、CH4浓度的主要因素;土壤温度与土壤中CO2浓度呈正相关关系且相关性随石漠化治理而变弱,说明经过石漠化治理土壤温度对土壤中CO2浓度的影响减弱。试验区岩溶试片溶蚀速率大于对比区,且经过石漠化治理,由岩溶作用产生的碳汇可提高0.66~9.42 t·km-2·a-1 ;说明石漠化治理对于岩溶区碳汇起到了促进作用。
-
关键词:
- 石漠化治理 /
- 土壤中CO2、CH4 /
- 岩溶试片 /
- 岩溶碳汇
Abstract: In order to explore the effects of rocky desertification control on the changes of CO2 and CH4 in soil and the effect of carbon sink, the CO2 and CH4 concentrations in the rocky desertification control demonstration area of Nanchuan,Chongqing were observed by gas chromatography, The effects of rocky desertification control on the changes of CO2 and CH4 in soil were analyzed combined with soil temperature, soil moisture content, soil bulk density and soil organic carbon in different soil layers in experimental area (the rock desertification control area) and comparison areas (grassland without rocky desertification control), the effect of rocky desertification control on karst sink effect was studied (experimental area) and the amount of karst carbon sink was also estimated using the dissolution data. The results show that,(1) The changes of CO2 and CH4 in soil are different in terms of time and space. The CO2 concentration increased firstly and then decreased with soil depth, and the variation range was 393-7,400 mg·L-1 ,while the CH4 concentration decreased firstly and then increased with soil depth, the variation range was 1.13 -3.42 mg·L-1. (2)The mean CO2 concentration in the experimental area was 2,131 mg·L-1 , and the mean value of CH4 was 1.94 mg·L-1,whereas the mean CO2 concentration in the comparison area was 2,338 mg·L-1 and the mean value of CH4 was 2.10 mg·L-1. (3)Soil temperature and soil organic carbon had a significantly positive correlation with CO2 , but negatively correlated with CH4 in soil, indicating that soil temperature and soil organic carbon are the main factors affecting the concentration of CO2 and CH4 in soil. (4)The relationship between soil temperature and CO2 was positive and the correlation was weakened with the increase of rocky desertification control, indicating that the impact of soil temperature on soil CO2 concentration was weakened after rocky desertification control. (5)The dissolution rate of karst test strip in the experimental area is larger than that in the comparison zone, and after the the treatment of rocky desertification, the carbon sink generated by karst processes can be increased by 0.66-9.42 t·km-2·a-1,indicating that the rocky desertification control improves the carbon sink in the karst area.-
Key words:
- rocky desertification control /
- soil CO2 /
- CH4 /
- karst test strip
-
[1] 吴次芳. 国土规划的理论与方法[M].北京:科学出版社, 2003. [2] 杨龙, 熊康宁, 肖时珍,等. 花椒林在喀斯特石漠化治理中的碳汇效益[J]. 水土保持通报, 2016, 36(1):292-297. [3] Wang Y Y.Concentration profiles of CH4, CO2 and N2O in soils of a wheatmaize rotation ecosystem in North China Plain,measurd weekly over a whole year[J].Agriculture Ecosystems and Environment,2013,164(1). [4] 刘芳,刘丛强,王仕禄,等. 喀斯特地区土壤剖面CO2、CH4和 N2O浓度的相关关系[J].生态学杂志,2010,29(4):717-723. [5] 房彬,李新清,张立科,等.西南喀斯特地区灌丛林土壤CO2、CH4通量研究[J].地球化学,2013,42(3):221-228. [6] 程建中,李心清,周志红,等.土壤CO2浓度与地表CO2通量的季节变化及其相互关系[J].地球与环境,2011,39(2):196-202. [7] 蒋忠诚, 罗为群, 童立强,等. 21世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 2016, 35(5):461-468. [8] 刘拓. 中国岩溶石漠化:现状、成因与防治[M]. 北京:中国林业出版社, 2009. [9] 何师意, 徐胜友, 张美良. 岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J]. 中国岩溶, 1997(4):319-324. [10] 黄奇波, 覃小群, 刘朋雨,等. 不同岩性试片溶蚀速率差异及意义[J]. 地球与环境, 2015, 43(4):379-385. [11] 曹建华, 杨慧, 康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J]. 科学通报, 2011, 56(26):2181-2187. [12] 朱真. 影响碳酸盐岩比溶蚀度,比溶解度因素探讨[J]. 广西地质, 1997(3):37-44. [13] 吴靖霆.湿地土壤剖面CO2、CH4进空分布规律及其影响因素研究[D].杭州:浙江大学,2016. [14] 刘芳, 刘丛强, 王仕禄,等. 黔中喀斯特石漠化地区土壤温室气体浓度的时空分布特征[J]. 环境科学, 2009, 30(11):3136-3141. [15] 丁维新, 蔡祖聪. 植物在CH4产生、氧化和排放中的作用[J]. 应用生态学报, 2003, 14(8):1379-1384. [16] Calhoun A, King G M. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes.[J]. Appl Environ Microbiol, 1997, 63(8):3051-3058. [17] Aulakh M S, Wassmann R, Rennenberg H, et al. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars.[J]. Plant Biol, 2000,2(2):182-194. [18] Anderson J M. Carbon dioxide evolution from two temperate, deciduous woodland soils[J]. Journal of Applied Ecology, 1973, 10(2):361-378. [19] Edwards N T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor[ J].Soil Science Society of America, 1975, 39(2):361- 365. [20] 孙向阳, 乔杰, 谭笑. 温带森林土壤中的CO2排放通量[J]. 东北林业大学学报, 2001, 29(1):34-39. [21] 刘硕, 李玉娥, 孙晓涵,等. 温度和土壤含水量对温带森林土壤温室气体排放的影响[J]. 生态环境学报, 2013,22(7):1093-1098. [22] 章程, 谢运球, 吕勇,等. 不同土地利用方式对岩溶作用的影响:以广西弄拉峰丛洼地岩溶系统为例[J]. 地理学报, 2006, 61(11):1181-1188. [23] 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56(1):136-140. [24] 孙文涛,肖千明,娄春荣,等. 土壤中甲烷的形成、排放及影响因素[J]. 杂粮作物, 2000(5):44-47. [25] Ford D, Williams P D. Karst Hydrogeology and Geomorphology[J]. American Geophysical Union, 2007. [26] Li W, Yu L J, Yuan D X, et al. Bacteria biomass and carbonic anhydrase activity in some karst areas of Southwest China[J]. Journal of Asian Earth Sciences, 2004, 24(2):145-152. [27] 蓝家程, 肖时珍, 杨龙,等. 石漠化治理对岩溶作用强度的影响及其碳汇效应[J]. 水土保持学报, 2016, 30(3):244-249. [28] 袁道先, 蔡桂鸿. 岩溶环境学[M]. 重庆: 重庆科学技术出版社, 1988,1-200. [29] 刘再华. 岩溶作用及其碳汇强度计算的“入渗平衡化学法”:兼论水化学径流法和溶蚀试片法[J]. 中国岩溶, 2011, 30(4):379-382. [30] Xu S, He S. The CO2 regime in soil profile and its drive to dissolution in carbonate rock area. Carsologica Sinica, 1996(15):50-57. [31] 章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26):21742180.
点击查看大图
计量
- 文章访问数: 2267
- HTML浏览量: 758
- PDF下载量: 528
- 被引次数: 0