Redistribution of precipitation by vegetation and its ecohydrological effects in a typical epikarst spring catchment
-
摘要: 本文在表层岩溶泉域植被结构特征分析的基础上,监测桂林丫吉试验场S31号泉域内香椿和云实两种主要植被的穿透雨和树干径流特征以及钻孔和表层岩溶水的变化。结果表明:香椿林的总穿透雨量1 861.83 mm,占总降雨总量的59.65%;云实灌丛总的穿透雨量为1 626.42 mm,占总降雨量的52.11%;穿透雨率随降雨量增加而减少。香椿林的树干径流总量为89.4 mm,占总降雨量的2.86%;云实灌丛的树干径流总量为27.79 mm,占总降雨量的0.89%;香椿林和云实灌丛的林冠截留总量分别为1 169.97 mm和1 466.99 mm,平均截留率为37.48%和47.01%;用水量平衡法计算得出以灌丛覆盖为主的S31号表层岩溶泉域年蒸散量为1 623.81 mm,占降水量的52.03 %,年径流深度为1 497.39 mm,占降水量的47.97%。植被冠层改变了降雨对表层岩溶带的补给形式和补给量。降雨经过植被冠层的截留后转化成穿透雨和树干径流进入表层岩溶带,穿透雨以连续波状的形式补给表层岩溶带,而树干径流则以快速集中的方式补给表层岩溶带。Abstract: Study of precipitation redistribution by vegetation and its effects on epi-karst water in southwest of China could guide the ecological protection and comprehensive development and utilization of karst water resources. Based on the analysis of the characteristics of two typical plants, this paper presents a study on this issue in a typical epikarst spring catchment, Southwest China. The results show that the through rainfall in Toona sinensis (S1) vegetation is 1,861.83 mm, accounting for 59.65% of the total precipitation. Through rainfall in Caesalpinia decapetala (S2) vegetation is 1,626.42 mm, accounting for 52.11% of the total precipitation. The through rainfall rate decreases with increasing precipitation. Stem flow in S1 is 89.4 mm, accounted for 2.86% of total precipitation. Stem flow in S2 was 27.79 mm, accounted for 0.89% of total precipitation. Interception storage in S1 and S2 are 1,169.97 mm and 1,466.99 mm, accounting for 37.48% and 47.01% of total rainfall, respectively. Using the water balance method, annual evapotransipiration in the Yaji typical epikarst spring catchment is 1,623.81 mm, accounting for 52.03% of the precipitation, and runoff depth is 1,497.39 mm, accounting for 47.97% of the precipitation. Canopy could change the precipitation recharge pattern and quantity to epi-karst zone. Precipitation is intercepted by canopy and partitioned into through rainfall and stem flow, while through rainfall supplements the epi-karst zone in a continuous wave-like manner. The vegetation interception can reduce the total supply of rainfall to the epi-karst zone, but increases the effective supply. Compared with Caesalpinia decapetala, Toona sinensis vegetation would increase the effective recharge to epikarst zone.
-
[1] 蒋忠诚,王瑞江,裴建国. 我国南方表层岩溶带及其对岩溶水的调蓄功能[J]. 中国岩溶,2001,20(2): 106-110. [2] 劳文科, 蒋忠诚, 时坚, 等. 洛塔表层岩溶带水文地质特征及其水文地质结构类型[J]. 中国岩溶, 2003, 22(4):258-266. [3] 覃小群, 蒋忠诚. 表层岩溶带及其水循环的研究进展与发展方向[J].中国岩溶, 2005, 24(3):250-254. [4] 邹胜章, 朱志伟, 梁彬, 等. 生态系统变化对湘西岩溶水资源的影响[J]. 水文地质工程地质, 2004, 31(5):26-30. [5] 王金叶,于澎涛,王彦辉. 森林生态水文过程研究以甘肃祁连山水源涵养林为例[M].北京:科学出版社,2008:71. [6] 余新晓,张志强,陈丽华,等. 森林生态水文[M]. 北京:中国林业出版社,2004:255. [7] Staelens J, Schrijver A D, Verheyen K, et al. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover [J]. Journal of Hydrology, 2006, 330:651-662 [8] Parker G G. Throughfall and stemflow in the forest nutrient cycle [J]. Advances in Ecological Research, 1983, 13, 57-133. [9] 马雪华.森林水文学[M].北京:中国林业出版社,1993,70-73. [10] 范世香, 高雁, 程银才, 等, 林冠对降雨截留能力的研究[J]. 地理科学, 2007, 27(2):200-204. [11] 马波, 李占斌, 马璠, 等. 模拟降雨条件下玉米植株对降雨再分配过程的影响 [J]. 生态学报, 2015, 35(2):497-507. [12] 段文军, 李海防, 王金叶, 等. 漓江上游典型森林植被对降水径流的调节作用[J]. 生态学报,2015, 35(3): 663-669. [13] 方书敏, 赵传燕, 荐圣淇, 等, 陇中黄土高原油松人工林林冠截留特征及模拟 [J]. 应用生态学报, 2013,24(6): 1509-1516. [14] 荐圣淇, 赵传燕, 方书敏, 等. 黄土高原丘陵沟壑区柠条和沙棘灌丛的降雨截留特征 [J]. 应用生态学报, 2012, 23(9): 2383-2389. [15] 孙忠林, 王传宽, 王兴昌, 等. 两种温带落叶阔叶林降雨再分配格局及其影响因子[J].生态学报, 2014, 34(14): 3978-3986. [16] 谢江左, 康文星. 植被系统调蓄水量的功能研究[J]. 湖南林业科技, 1996, 23(1):53-58. [17] 韩永刚,杨玉盛.森林水文效应的研究进展[J].亚热带水土保持,2007,19(2):20-24. [18] 范世香,裴铁番,蒋德明,等. 两种不同林分截留能力的比较研究[J]. 应用生态学报,2000,11(5):671-674. [19] Samba S A N, Camire C, Margolis H A. Allometry and rainfall interception of Cordyla pinnata in a semi-arid agroforestry parkland Senegal[J]. Forest Ecology and Management,2001,154(1-2):277-288. [20] 尹佃忠. 森林植被对地下水补给作用分析[J]. 地下水, 2003, 25(1):9-10. [21] 姜光辉,郭芳. 我国西南岩溶区表层岩溶带的水文动态分析[J]. 水文地质工程地质.2009(5):89-93. [22] 常勇, 吴吉春, 姜光辉, 等. 峰丛洼地岩溶泉流量和水化学变化过程中地面径流的作用[J]. 水利学报, 2012, 43(9):1050-1057. [23] 袁道先, 戴爱德, 蔡五田, 等. 中国南方裸露型岩溶峰山区岩溶水系统及其数学模型的研究: 以桂林丫吉为例[M]. 桂林: 广西师范大学出版社, 1996: 88-118. [24] 王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6) :933-937. [25] 孙昌禹, 董博飞, 董文琦.区域蒸散量估算技术研究进展[J]. 河北农业科学,2006,10(3):103106. [26] Krishnaswamy J, Bonell M,Venkatesh B, et al. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the“infiltration-evapotranspiration trade-off hypothesis” [J]. Journal of Hydrology, 2013,498,191-209. [27] 高人. 辽宁东部山区几种主要森林植被类型水量平衡研究 [J]. 水土保持通报, 2002, 22(2):5-8. [28] Giambelluea T W, Ziegler A D,Nullet M A,et al. Transpiration in a small tropical forest patch [J]. Agriculure and Forest Meteorology, 2003, 117(12):1-22. [29] 王彦辉,熊伟,于澎涛,等.干旱缺水地区森林植被蒸散耗水研究[J]. 中国水土保持科学,2006,4(4):19-26.
点击查看大图
计量
- 文章访问数: 1615
- HTML浏览量: 572
- PDF下载量: 654
- 被引次数: 0