Unconformity characteristics of the top of Leikoupo Formation and their effect on reservoirs in the western Sichuan basin
-
摘要: 近年来,川西地区在雷口坡组顶部钻遇优质储层,取得了天然气勘探的重大突破。基于野外露头、钻井岩芯、薄片、录井、测井、常量元素和(碳、氧)同位素等资料的分析,对川西地区雷口坡组顶部不整合面特征及其对储层影响进行了研究。结果表明,不同地区雷顶储层受不整合面的影响存在差异性:彭州地区雷顶发育裂缝型灰岩储层,储层发育不受不整合面影响;新场地区雷顶发育孔隙型白云岩储层,不整合面对储层有改善作用;回龙地区雷顶发育石膏溶蚀孔、洞型岩溶储层,不整合面对储层发育起控制作用。岩性和微古地貌是影响川西地区古岩溶作用发育的决定性因素。回龙地区广泛发育的规模性岩溶储层是川西雷口坡组下一步勘探的有利目标。Abstract: Recently, a great breakthrough in gas exploration has been made at the top of Leikoupo Formation, where high-quality reservoirs were found by drilling in the western Sichuan basin. Based on outcrop, core, thin section, log, element analysis, carbon and oxygen isotopes, this work defined the unconformity characteristics and analyzed their influence on the reservoirs. The results show varied effects of the unconformity at different places. The Pengzhou area hosts fractured limestone reservoirs, where the conformity has no effect on them. In the Xinchang area, paleokarst may have improved the reservoir quality. Conformity has controlled reservoir distribution in the Huilong area, because in the subaerial environment gypsum dissolution and pores are preserved. Lithofacies and micro-palaeogromorphology are main factors of karstification affecting the development of paleokarst in western Sichuan basin . Large-scale paleokarst reservoirs developed widely in the Huilong area, which would be the favorable target for next exploration.
-
Key words:
- western Sichuan basin /
- Leikoupo Formation /
- unconformity /
- paleokarst
-
[1] Ford D,Williams P.Karst hydrogeology and geo-morphology: Chichester[M].United Kingdom John Wiley& Sons,2007:578. [2] Kerans C.Karstcontrolled reservoir heterogeneity inEllenburger Group carbonates of west Texas[J].AAPGBulletin,1988,72:1160-1183. [3] Viniegra O F,Tejero C C.Golden Lanefields,Veracruz,Mexico,in M.T.Halbouty,ed,Geologyof giant petroleum fields[J].AAPG Memoir ,1970,14: 25-309. [4] Castillo M V, Mann P.Deeply buried,EarlyCretaceous paleokarstterrane,southern MaracaiboBasin,Venezuela[J].AAPG Bulletin,2005, 90(4):567-579. [5] Gunn J.Encyclopedia of caves and karst science[M].New York and London,Fitzroy Dearborn,2004:1724. [6] 付勋勋,刘新社,邵晓州,等.鄂尔多斯盆地奥陶系古岩溶发育程度的分形特征[J].中国岩溶,2017, 36(1):23-31 [7] 张庆玉,梁彬,秦凤蕊,等.塔里木盆地奥陶系古潜山碳酸盐岩岩溶储层评价与预测以轮古7井区以东为例[J].中国岩溶,2017,36(1):32-41 [8] 曹建文,金意志,夏日元,等.塔河油田4区奥陶系风化壳古岩溶作用标志及控制因素[J].中国岩溶,2012,31(2):220-226 [9] 陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报,2004,22(2):244-253. [10] Budd D A,Saller A N ,Harris P M.Unconformities and porosity in carbonate strata[M].AAPG,1995:4-12. [11] 郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996:70. [12] 周进高,辛勇光,谷明峰,等.四川盆地中三叠统雷口坡组天然气勘探方向[J].天然气工业,2010(12):16-19,121. [13] 杨光,石学文,黄东,等.四川盆地龙岗气田雷四3亚段风化壳气藏特征及其主控因素[J].天然气工业,2014,34(9):17-24. [14] 钟怡江,陈洪德,林良彪,等.川东北地区中三叠统雷口坡组四段古岩溶作用与储层分布[J].岩石学报,2011,27(8):2272-2280 [15] 甘振维.理论创新和技术进步支撑引领百亿气田建设[J].天然气工业,2016,36(12):1-9. [16] 唐宇.川西地区雷口坡组沉积与其顶部风化壳储层特征[J].石油与天然气地质,2013,34(1):42-47. [17] 蔡左花, 冯霞, 刘诗荣,等. 川西坳陷XC构造带雷口坡组顶部风化壳储层预测[J]. 海相油气地质, 2014, 19(4):50-56. [18] 宋晓波,王琼仙,隆轲,等.川西地区中三叠统雷口坡组古岩溶储层特征及发育主控因素[J].海相油气地质,2013,18(2):8-14. [19] 许国明,宋晓波,冯霞,等.川西地区中三叠统雷口坡组天然气勘探潜力[J].天然气工业,2013,33(8):8-14. [20] 孟昱璋,徐国盛,刘勇,等.川西雷口坡组古风化壳喀斯特气藏成藏条件[J].成都理工大学学报:自然科学版,2015(1):70-79. [21] 李蓉,胡昊,许国明,等.四川盆地西部坳陷雷四上亚段白云岩化作用对储集层的影响[J].新疆石油地质,2017,38(2):149-155. [22] 谢刚平.川西坳陷雷四上亚段晶粒白云岩成岩作用和孔隙演化[J].长江大学学报:自然科学版,2015,12(17):24-26. [23] 刘树根,宋金民,罗平,等.四川盆地深层微生物碳酸盐岩储层及其油气勘探前景[J].成都理工大学学报:自然科学版,2016,43(2):129-152. [24] 杨克明.四川盆地“新场运动”特征及其地质意义[J].石油实验地质,2014,36(4):391-397. [25] 李书兵,许国明,宋晓波.川西龙门山前构造带彭州雷口坡组大型气田的形成条件[J].中国石油勘探,2016,21(3):74-82. [26] 张存,胡有福,陈军,等.WEFOX叠前成像技术及其在塔里木盆地塔中地区岩溶缝洞储层中的应用[J].天然气地球科学,2015,26(S2):158-164. [27] 姚泾利,王兰萍,张庆,等.鄂尔多斯盆地南部奥陶系古岩溶发育控制因素及展布[J].天然气地球科学,2011,22(1):56-65. [28] 王建民,王佳媛.古岩溶地貌与古岩溶储层岩溶效应分析:以鄂尔多斯盆地东部奥陶系风化壳为例[J].天然气地球科学,2016,27(8):1388-1398. [29] 王剑,付修根,陈文西,等.藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J].沉积学报,2007,25(4):487-494 [30] 陈景山, 李忠, 王振宇,等. 塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J]. 沉积学报, 2007, 25(6):858-868. [31] 郑荣才,郑超,胡忠贵,等.川东石炭系古岩溶储层锶同位素地球化学特征[J].天然气工业,2009,28(7):48+129-130. [32] Heydari E.Meteoric versus burial control on porosity evolution of the Smackover formation[J].AAPG Bulletin,2003,87(11):1779-1797. [33] 代冬冬,孙勤华,王宏斌,等.塔里木盆地哈拉哈塘地区奥陶系顺层岩溶带高产稳产主控因素[J].天然气地球科学,2015,26(S1):88-96. [34] 韩长城,林承焰,任丽华,等.塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J].天然气地球科学,2016,27(5):790-798. [35] Wright V P,Baceta J I,Lapointe P A.Paleokarsticmacroporosity development at platform margins: Lessonsfrom the Paleocene of north Spain[J]. Society of Exploration Geophysicists and American Association of Petroleum Geologists,2014,8:1-13. [36] Korte C,Kozur H W,Beizer J.δ13C and δ16O valus of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and paleotemperature[J].Palaeogeopraphy,Palaeoclimatology,Palaeoecology,226(2005):287-306. [37] 李江海,姜洪福.全球古板块再造、岩相古地理及古环境图集[M].北京,地质出版社,2013:38. [38] 黄思静,成欣怡,赵杰,等.近地表温压条件下白云岩溶解过程的实验研究[J].中国岩溶,2012,31(4):349-359.
点击查看大图
计量
- 文章访问数: 2172
- HTML浏览量: 594
- PDF下载量: 692
- 被引次数: 0