Research advances of numerical simulation of groundwater in karst areas
-
摘要: 岩溶含水介质的不均一性导致岩溶地下水流动、溶质运移和热量迁移的数学模拟研究成为地下水模拟的难点。本文综述了岩溶区地下水流模拟的几种方法,重点阐述了等效多孔介质法、双重连续介质法和三重介质法的定义、发展过程和适用范围,并回顾了这几种方法的研究成果。从等效多孔介质法到三重介质法,模拟精度不断提高,适用范围也逐渐由大区域实际问题向小区域理论研究过渡。介绍了溶质运移模拟和热迁移模拟的研究方法及实例。溶质运移模拟以对流弥散方程为基础,其中尺度效应是溶质运移模拟的重点研究问题;热量迁移模拟应考虑地下热水密度变化对地下热水运动的影响。溶质运移模拟和热量迁移模拟往往是将迁移模型和已经调试成功的地下水流动模型相耦合,从而达到模拟溶质及热量迁移的目的。由于溶质运移和热量迁移的复杂性,现阶段水流模型多数处于等效多孔介质模型阶段。综合理论及实际应用,指出精确刻画裂隙及管道和注重基础数学算法是岩溶水数值模拟进步的关键。Abstract: The heterogeneity of karst aquifer media makes it difficult to perform numerical simulation of groundwater flow, solute transport and heat migration in karst zones. This article provides a brief overview of several methods to simulate groundwater in karst areas, and focuses on the equivalent porous medium, double porosity and the triple porosity models. The definition, development, applicable scope and several research findings of these models are reviewed. From the equivalent porous medium method to the triple porosity model, the simulation accuracy has been continuously enhanced, and the scope of application has gradually shifted from large regional practical problems to theoretical research of small areas. Several research methods and examples for the simulation of solute transport and heat migration are also presented. The simulation of solute transport is based on the convection dispersion equation and the scale effect is the focus of the solute transport simulation. The influence of density change of underground hot water on the movement of groundwater should be considered in heat migration simulation. The simulations of solute transport and heat transfer are often coupled with the model of groundwater flow which has been successfully debugged so as to achieve the purpose of simulating the solute and heat transfer. Because of the complexity of solute transport and heat transfer, the equivalent porous medium model is commonly applied to most of the water flow models at this stage. The authors point out that paying attention to the depiction of fractures and conduits as well as the basic mathematical algorithm is the key to make progress in the numerical simulation of groundwater in karst areas.
-
Key words:
- groundwater /
- karst /
- numerical simulation /
- solute transport /
- heat migration
-
[1] 王茂枚. 岩溶地区地下水动力条件物理模拟[D]. 南京:河海大学,2008. [2] 张洪霞, 宋文. 地下水数值模拟的研究现状与展望[J]. 水利科技与经济, 2007, 13(11):794-796. [3] 刘久荣, 王新娟, 王荣,等. 岩溶水数值模拟研究进展[J]. 城市地质, 2012, 7(4): 1-6 [4] Nico Goldscheider, David. 岩溶水文地质学方法[M]. 北京: 科学出版社, 2015: 76-91. [5] 魏加华, 郭亚娇, 王荣,等. 复杂岩溶介质地下水模拟研究进展[J]. 水文地质工程地质, 2015, 42(3): 27-34. [6] 宋晓晨, 徐卫亚. 裂隙岩体渗流概念模型研究[J]. 岩土力学, 2004, 25(2): 226-232. [7] Hsieh P A, Neuman S P. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 1. theory[J]. Water Resources Research, 1985, 21(11):1655-1665. [8] Hsieh P A, Neuman S P, Stiles G K, et al. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. methodology and application to Fractured Rocks[J]. Water Resources Research, 1985, 21(11):1667-1676. [9] Pankow J F. An evaluation of contaminant migration patterns at two waste disposal sites on fractured porous media in terms of the equivalent porous medium (EPM) model[J]. Journal of Contaminant Hydrology, 1986, 1(1):65-76. [10] Michael E B, Randall J C. A parsimonious model for simulating flow in a karst aquifer[J]. Journal of Hydrology, 1997, 196(1-4): 47-65. [11] Bridget R S, Robert E M, Michael E B, et al. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA[J]. Journal of Hydrology, 2003, 276(1-4): 137-158. [12] Borelli M, Pavlinz B. Approach to the problem of undergroundwater leakage from the storages in karst regions[C]. Hydrologie des Roches Fissures, Proceedings of the Dubrovnik Symposium. Paris: AIME, 1965: 32-62. [13] 朱学愚, 刘建立. 山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J]. 地学前沿, 2001, 8(1): 171-177. [14] 刘晓红. 三姑泉域岩溶地下水资源数值模拟研究[D]. 太原:太原理工大学, 2005. [15] 郑茂辉, 李鸿喜. 岩溶断块区地下水流数值模拟[J]. 水文地质工程地质, 2001, 28(1): 7-9. [16] 刘立才, 陈鸿汉, 马振民,等. 泰安市岩溶水环境系统模拟分析[J]. 水利学报,2003,34 (2):107-111. [17] 李向全, 侯新伟, 张莉. 宁南深层岩溶地下水系统三维数值模拟[J]. 地球科学进展, 2004, 19(s1): 143-147. [18] 冯克印, 任翠爱, 姚春梅,等. 地下水数值模拟在岩溶塌陷预警系统中的应用:以山东临沂市城区岩溶塌陷为例[J]. 中国地质灾害与防治学报, 2007, 18(2): 112-116. [19] 于青春, 陈德基, 薛果夫. 岩体非连续裂隙网络水力学特征[J]. 地球科学, 1995, 20(4): 474-478. [20] Shuster E T, White W B. Seasonal fluctuations in the chemistry of limestone spring: A possible means for characterizing carbonate aquifers[J]. Journal of Hydrology, 1971, 14(2): 93-128. [21] White W B. Conceptual model for carbonate aquifer: Hydrogeologic problem in karst regions[M]. Western Kentucky University, 1977: 176-187. [22] Putnam L D, Long A J. Numerical groundwater-flow model of the minnelusa and madison hydrogeologic units in the Rapid City area, South Dakota[J]. US Geological Survey Scientific Investigation Report , 2009, 52(5): 1-81. [23] Stephen P S, Michael J R, Andrew J L. Comparison of a karst groundwater model with and without dicrete conduit flow[J]. Hydrogeology Journal, 2013, 21(7): 1555-1566. [24] 潘国营, 武强. 焦作矿区双重介质裂隙网络渗流与渗流模型研究[J]. 中国岩溶, 1998, 17(4): 363-369. [25] 刘文波. 陕西省渭北东部岩溶水开采动态预测:裂隙-孔隙双重介质三维流模型[D]. 武汉:中国地质大学(武汉) , 2003. [26] Cornaton F, Perrochet P. Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling[J]. Journal of Hydrology, 2011, 262(1): 165-176. [27] Atkioson T C. Present and future directions in karst hydrogeology[J]. Annales de la societe Gologiquede Belgique, 1985, 108: 293-296. [28] Quinlan R F, Ewers R O. Ground water flow in limestone terraines: Strategy rational and procedure for reliable, efficient monitoring of groundwater quality in karst Area[M]. Proc. 5th Nat. Symp, Aquifer Restoration and Ground Water Monitoring, Nat. Water Well Assoc. Worthington, 1985: 197-234. [29] Bear. 多孔介质流体动力学[M]. 北京: 中国建筑工业出版社, 1983: 125-127. [30] 陈崇希. 岩溶管道-裂隙-孔隙三重介质地下水流模型及模拟方法研究[J]. 地球科学, 1995, 20(4): 361-366. [31] 杨杨, 唐建生, 苏春田,等. 岩溶区多重介质水流模型研究进展[J]. 中国岩溶, 2014, 33(4): 419-424. [32] 成建梅, 陈崇希. 广西北山岩溶管道-裂隙-孔隙地下水流数值模拟初探[J]. 水文地质工程地质, 1998, 21(4): 52-56. [33] 赵坚, 赖苗, 沈振中. 适于岩溶地区渗流场计算的改进折算渗透系数法和变渗透系数法[J]. 岩石力学与工程学报, 2005, 24(8): 1341-1347. [34] 任虎俊. 平朔矿区安家岭井工矿充水因素分析及涌水量预测[D]. 南京:河海大学, 2008. [35] 孙从军, 韩振波, 赵振. 地下水数值模拟的研究与应用进展[J]. 环境工程, 2013, 31(5): 9-17. [36] Slichter C S. Theoretical investigation of the motion of ground waters[M].United States Geological Survey, 1899: 59-384. [37] 魏新平, 王文焰, 王全九,等. 溶质运移理论的研究现状和发展趋势[J]. 灌溉排水, 1998, 17(4): 59-63. [38] 郑春苗. 地下水污染物迁移模拟(第二版) [M]. 北京: 高等教育出版社, 2001: 1-7. [39] 薛红琴. 地下水溶质运移模型应用研究现状与发展[J]. 勘察科学技术, 2008, 16(6): 17-22. [40] Gelhar L W, Welty C, Rehfeldt K R. A critical review of data on field‐scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7):1955-1974. [41] Diodato D M. Fracture trace mapping of the Eldridge-Wilde well field, Pinellas County, Florida[J]. U.S. Geological Survey, 1999,99(225):1-20. [42] 吴吉春, 薛禹群, 黄海,等.山西柳林泉裂隙发育区溶质运移三维数值模拟[J]. 南京大学学报(自然科学版), 2000, 36 (6): 728734. [43] 朱锋. 北京西山奥陶系岩溶水数值模拟及地下水开采环境效应分析[D]. 北京:首都师范大学, 2014. [44] Hochstein M P, Yang Z, Ehara S. The fuzhou geothermal system (People's Republic of China): Modelling study of a low temperature fracturezone system[J]. Geothermics, 1990, 19(1): 43-60. [45] Mcguinness M, White S, Young R, et al. A model of the Kakkonda geothermal reservoir[J]. Geothermics, 1995, 24(94):1-48. [46] Kiryukhin A V. Modeling studies: The Dachny geothermal reservoir, Kamchatka, Russia[J]. Geothermics, 1996, 25(3): 63-90. [47] 朱家玲, 张启. 天津静海团泊风景区地下热水资源评价的数值模拟[J]. 太阳能学报, 1996,17(4): 336-343. [48] O'Sullivan M J, Yeh A, Mannington W I. A history of numerical modelling of the Wairakei geothermal field[J]. Geothermics, 2009, 38(1):155-168. [49] 樊秀峰, 吴振祥, 简文彬,等. 福州温泉区地下热水有限元数值模拟研究[J]. 福州大学学报, 2005, 33(2): 226-229. [50] Holzbecher E, Kohfahl C, Mazurowski M, et al. The sensitivity of thermohaline groundwater circulation to flow and transport parameters: a numerical study based on double-diffusive convection above a salt dome.[J]. Transport in Porous Media, 2010, 83(3):771-791. [51] 雷海燕, 朱家玲. 孔隙型地热采灌开发方案的数值模拟研究[J]. 太阳能学报, 2010, 31(12): 1633-1638. [52] 马云东, 姜秋耘, 潘科. 热渗耦合的地下水源热泵抽灌井传热数值模拟[J]. 水电能源科学, 2010, 28(12): 39-41. [53] Xun Zhou, Mingyou Chen, Weiming Zhao, et al. Modeling of a deep-seated geothermal system near Tianjin, China[J]. Ground Water, 2001, 39(3): 443-448. [54] 周训, 陈明佑, 李慈君. 深层地下热水运移的三维数值模拟[M]. 北京: 地质出版社, 2001: 1-61. [55] 张志辉, 薛禹群, 吴吉春. 地下热水运移中自然对流的研究[J]. 水文地质工程地质, 1995, 22(4): 16-17. [56] 黎明, 李国敏, 杨辽,等. 陕西渭北东部岩溶热水运移数值模型研究[J]. 中国科学(地球科学), 2006, 36(S2): 33-38. [57] 田光辉. 天津市东丽湖温泉度假旅游区地热资源可持续开发利用研究[D]. 北京:中国地质大学(北京) , 2014. [58] 李婧玮. 天津东丽湖区基岩地下热水的三维非稳定流数值模拟[D]. 北京:中国地质大学(北京) , 2006. [59] 赵敬波. 地下热水流动与热量运移的三维非稳定流数值模拟研究[D]. 北京:中国地质大学(北京) , 2015. [60] 赵静, 郭海丹, 郑佳,等. 地下水热运移模拟软件综述[J]. 现代农业, 2009, 35(6): 174-176. [61] 薛禹群. 中国地下水数值模拟的现状与展望[J]. 高校地质学报, 2010, 16(1): 1-6.
点击查看大图
计量
- 文章访问数: 2806
- HTML浏览量: 750
- PDF下载量: 1051
- 被引次数: 0