Characteristics of the Doushuai karst cave in Hunan and its formation and development process
-
摘要: 为阐明兜率岩溶洞的形成原因和发育过程,调查了兜率岩溶洞及其周边区域地层岩性和地质构造,测量了溶洞形态及溶蚀堆积物特征;用 14C法或U系法对洞内典型堆积物样品进行测年,估算出岩溶堆积物的生长速度,研究结果表明:兜率岩溶洞是完整的独立溶腔碳酸盐岩洞穴;溶洞内石笋发育强烈,石笋的生长速度略快于石钟乳的生长速度,石笋高度为2~26 m,直径在0.5~5 m,生长速度为0.24~0.50 mm·a-1;石钟乳长度为3~20 m,生长速度为0.20~0.40 ·a-1;洞内最高石柱高达37 m,最高的二次沉积物可达12 m,直径为0.6 m。兜率岩溶洞的形成是岩石、水流与构造运动共同作用的结果,区域构造产生的断层和裂隙使区内碳酸盐岩石破碎并遭受地下水的溶蚀和侵蚀,在区域缓慢抬升活动过程中形成了兜率岩溶洞;溶洞的发育经历了三个阶段:距今200~78万年的初始形成阶段,距今78~14万年的发展壮大阶段和距今14万年前至今的稳定沉积阶段。溶洞内大多数的溶蚀堆积物产生于14万年以来,少量的新生溶蚀堆积物基本形成于700年以前。在距今1万年左右开始形成二次沉积物。目前,兜率岩溶洞进入稳定沉积晚期。Abstract: The Doushuai karst cave, is located at the southern end of the Doushuai island in Dongjiang lake of Hunan Province. it is situated in warm and humid subtropical climate zone with an average annual precipitation of 1,645 mm and a mean annual temperature of 17.1 ℃. As the landform is dominated by erosive and corrosive geomorphologic types, the area is less than 500 m amsl and is well vegetated. In order to study the formation and evolution of the karst cave, the lithologies and geological structures in the vicinity of the cave were investigated in detail. The cave morphology and the characteristics of cave sediments were measured. Furthermore, 14C and U-system dating methods were used to estimate the growth rate of sediments. The results show that the Doushuai cave is an isolated karst cave with well-developed speleothems such as stalagmites. The growth rates of stalagmites are slightly faster than that of stalactites. The height and diameter of stalagmites vary from 2 to 26 m and from 0.5 to 5 m, respectively, with a growth rate ranging from 0.24 to 0.50 mm·a-1. The lengths of stalactites change from 3 to 20 m with growth rate varying between 0.20 and 0.40 mm·a-1. In the cave, the tallest stalagnate is 37 m in height; and the longest secondary sediment can reach 12 m high with a diameter of 0.6 m. The formation of the Doushuai cave is a combined result of carbonate rocks, geological structures, water flow and regional tectonic movement, in which faults and fissures provide groundwater flow paths that control the erosion and corrosion of carbonate rocks; and regional tectonic movement plays an important role in slowly uplifting the crustal block which lead to the formation of the cave. In this process, the cave have undergone three stages of development: initial formation phase of 2-0.78 million years ago, development phase of 0.78-0.14 million years ago and stable sedimentation phase from 0.14 million years ago to the present. Most of the sediments have been deposited since 0.14 million years ago and a small amount of new sediment was formed nearly 700 years ago. The secondary sediments were produced around 10 thousand years ago. At present, the cave is in the later period of the stable sedimentation stage. The non-stratification of the Doushuai cave is perhaps caused by the slow ascending of the regional crustal block and the collapse of rocks on the cave roof.
-
Key words:
- karst cave /
- cave characteristics /
- carbonate rock /
- karst in south China /
- formation age
-
[1] Demény A, Németh P, Czuppon G, et al. Formation of amorphous calcium carbonate in caves and its implications for speleothem research [J]. Scientific Reports, 2016, 6: 1-10. [2] Zhang H, Cai Y, Tan L, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions [J]. Sedimentary Geology, 2014, 309 (Supplement C): 1-14. [3] Fairchild J I, Baker A. Speleothem Science: From Process to Past Environments [M]. Blackwell Publishing Ltd., 2012. [4] 陈琼, 陈琳, 黄嘉仪, 等. 岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展[J].中国岩溶,2015,34(5):479-485. [5] 曹明达, 周忠发, 张强, 等. 岩溶洞穴水理化性质特征及其环境意义:以贵州织金洞为例[J].中国岩溶, 2016, 35(3): 314-321. [6] 杨振华, 李坡, 吴克华. 岩溶洞穴古河漫滩沉积物特征及其沉积环境演变:以山王洞中段为例[J].中国岩溶, 2016, 35(4): 394-401. [7] 臧红飞, 郑秀清, 赵洁, 等. 柳林泉域滞流区低温岩溶热水的年龄分析[J].中国岩溶,2017,36(4):550-556. [8] 殷超, 周忠发, 曹明达, 等. 岩溶洞穴内气候环境因子关系分析:以贵州省织金洞为例[J]. 中国岩溶,2016,35(4):414-424. [9] 刘伟, 周宏, 柯怡兵, 等. 岩溶表层带水生动物微分布规律及水文环境影响:以Velika Pasica溶洞为例[J]. 中国岩溶, 2017, 36(4): 563-571. [10] 徐国强, 刘树根, 武恒志, 等. 海平面周期性升降变化与岩溶洞穴层次关系探讨[J].沉积学报, 2005, 23(2): 316-322. [11] Rodriguez-Navarro C, Kudlacz K,Cizer ?zlem,et al.Formation of amorphous calcium carbonate and its transformation into mesostructured calcite[J].CrystEngComm,2015,17(1):5872. [12] Bozeman J, Bozeman S. Speleology of gypsum caves in Oklahoma [J]. Carbonates and Evaporites, 2002, 17(2): 107-119. [13] Bolze J, Peng B, Dingenouts N,et al.Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time resolved SAXS [J].Langmuir,2002,18(22):8364-8369. [14] 董莹, 琚宜文, 张玉修, 等. 北京房山张坊岩溶区节理发育特征及其对岩溶作用的影响[J]. 中国科学院大学学报, 2014, 31(6): 783-790. [15] 曹建文, 夏日元, 张庆玉, 等. 古今湿热气候条件下典型碳酸盐岩缝洞系统结构模式及发育特征[J]. 中国岩溶, 2015, 34(2): 115-125. [16] 郑聪斌, 章贵松, 王飞雁, 等. 鄂尔多斯盆地奥陶系热水岩溶特征[J]. 沉积学报, 2001, 19(4): 524-529. [17] 漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. [18] 王增银, 万军伟, 姚长宏, 等. 清江流域溶洞发育特征[J]. 中国岩溶, 1999, 18(2): 151-158. [19] 刘子金, 袁代江, 武兴亮, 等. 贵州平寨水库左岸底层灌浆廊道大型充填溶洞及其形成机制[J]. 工程地质学报, 2015, 23(3): 554-563. [20] 吕金波, 卢耀如, 郑桂森, 等. 北京西山岩溶洞系的形成及其与新构造运动的关系[J]. 地质通报, 2010, 29(4): 502-509. [21] 沙旭光, 程新民, 孙忠实, 等. 吉林磐石官马溶洞的洞穴特征及形成时代初探[J]. 世界地质, 2006, 25(3): 270-274. [22] 夏凯生, 袁道先, 谢世友, 等. 乌江下游岩溶地貌形态特征初探:以重庆武隆及其邻近地区为例[J]. 中国岩溶, 2010, 29(2): 196-204. [23] 谭明, 王颖, 何华春, 等. 南京三台溶洞地貌形成与长江古水面关系初探[J]. 第四纪研究, 2010, 30(5): 877-882. [24] 平亚敏, 杨桂芳, 张绪教, 等. 张家界砂岩地貌形成时代:来自阶地与溶洞对比的证据[J].地质论评, 2011, 57(1): 118-124. [25] 唐益群, 叶为民, 黄雨, 等.全充型复活溶洞-宜兴慕蠡洞洞穴发育特征[J]. 水文地质工程地质, 2001, 28(5): 39-42. [26] Scholz D, Tolzmann J, Hoffmann L D, et al. Diagenesis of speleothems and its effect on the accuracy of 230Th/U-ages [J]. Chemical Geology, 2014, 387(11): 74-86.
点击查看大图
计量
- 文章访问数: 2372
- HTML浏览量: 569
- PDF下载量: 728
- 被引次数: 0