Early warning threshold of sinkhole collapse based on dynamic characteristics from groundwater monitoring: A case study of Jinshazhou of Guangzhou, China
-
摘要: 监测预警是岩溶塌陷地质灾害防治领域急需解决的技术难题。文章在总结当前岩溶塌陷监测预警研究现状的基础上,以广州金沙洲地区岩溶塌陷监测为例,通过对不同岩溶塌陷阶段地下水动力条件监测数据分析,发现数据异常值反映了不同工况地下水动态和岩溶塌陷发展阶段的突变关系,以此为基础,通过曲线拟合和残差分析确定了岩溶塌陷预警的置信带。通过对比分析异常值出现最多次数时间,最大及最小异常值出现时间和实际岩溶塌陷发生时间,验证了运用异常数据分析法进行岩溶塌陷预警是可行的,监测数据间隔越密,捕获的异常值越多,预警越准确。Abstract: Karst sinkhole collapse early warning based on monitoring data has long been a prominent technical problem which needs to be solved in the field of geohazard. This paper analyses the current status of sinkhole collapse monitoring and early warning research, and then presents a case study of Jinshazhou of Guangzhou on this issue. The analytical result of groundwater monitoring data shows that the data anomalies largely reflect the abrupt change of groundwater dynamic and the stage of relevant karst collapse development. On this basis, through curve fitting and residual analysis this work determines the confidence belt of sinkhole collapse early warning. Comparing the times of most frequent anomalies, occurrence of maximum and minimum outliers, and the actual times of karst collapse, it is confirmed that it is feasible to use the anomaly data analysis method to make early warning of sinkhole collapse. With shorter monitoring data intervals, capturing more anomalies, the early warning will be more accurate.
-
[1] Qiusheng Wu, Chengbin Deng, Zuoqi Chen. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models[J]. Geomorphology, 2016, 266:1-10. [2] Emanuele Intrieri, Giovanni Gigli, Massimiliano Nocentini, Luca Lombardi, Francesco Mugnai, Francesco Fidolini, Nicola Casagli. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application[J]. Geomorphology, 2015, 241(15): 304-314. [3] Awni T Batayneh, Abdelruhman A Abueladas, Khaled A Moumani. Use of ground-penetrating radar for assessment of potential sinkhole conditions: an example from Ghor al Haditha area, Jordan[J]. Environmental Geology, 2002,41(8): 977-983. [4] M G Ezersky, L V Eppelbaum, A Al-Zoubi, et al. Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan[J]. Environmental Earth Sciences, 2013, 70 (4):1463-1478. [5] Andrzej Kotyrba,Lukasz Kortas. Sinkhole hazard assessment in the area of abandoned mining shaft basing on microgravity survey and modelling — Case study from the Upper Silesia Coal Basin in Poland[J]. Journal of Applied Geophysics, 2016, 130:62-70. [6] Xiaozhen Jiang, Yongli Gao, Yuanbin Wu, et al. Use of Brillouin optical time domain reflectometry to monitor soilcave and sinkhole formation[J]. Environmental Earth Sciences, 2016, 75:225. [7] Yan Meng,Feng Ji,Long Jia,et al. A new approach for forecasting the appearance of sinkholes near the Jinshazhou tunnel[J]. Environmental Earth Sciences, 2014,71 (8):3339-3347. [8] 李瑜,朱平,雷明堂,等. 岩溶地面塌陷监测技术与方法[J]. 中国岩溶, 2005,24(2):103-108. [9] 吴立新,高均海,葛大庆,等 . 基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J]. 地理与地理信息科学,2004,20(2):32-37. [10] 张虎生,兰樟松,张炎孙,等. 地质雷达在瑞金沙州坝岩溶塌陷调查中的应用效果[J].物探与化探, 2000,24(6):459-463. [11] Fuping Gan, Kai Han, Funing Lan, et al. Multi-geophysical approaches to detect karst channels underground-A case study in Mengzi of Yunnan Province, China[J]. Journal of Applied Geophysics, 2017,136: 91-98. [12] 蒙彦,管振德. 应用光纤传感技术进行岩溶塌陷监测预报的关键问题探讨[J].中国岩溶, 2011,30(2):187-192. [13] 雷明堂,蒋小珍,李瑜,等. 抽水触发岩溶塌陷的耦合机理与临界条件模型试验研究[A]//2008年度中国地质科技新进展和地质找矿新成果资料汇编[C]. 2008. [14] 黄健民,吕镁娜,郭宇,等. 广州金沙洲岩溶地面塌陷地质灾害成因分析[J].中国岩溶,2013,32(2):167-173. [15] 戴建玲,罗伟权,吴远斌,等. 广西来宾市良江镇吉利村岩溶塌陷成因机制分析[J].中国岩溶,2017,36,(6):283-293. [16] 陈亮晶,孙锡良,皮景,等. 湖南宁乡大成桥地区岩溶地面塌陷分布特征及影响因素分析[J].中国岩溶,2014,33(4):490-497. [17] 沈铭,杨涛,赵新建. 武汉市岩溶地面塌陷监测技术探讨[J].资源环境与工程, 2014,28(2):177-180.
点击查看大图
计量
- 文章访问数: 2085
- HTML浏览量: 653
- PDF下载量: 670
- 被引次数: 0