• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸盐岩风化过程中高场强元素的地球化学行为研究——来自碳酸盐岩淋溶实验的证据

冯志刚 刘炫志 韩世礼 马 强

冯志刚, 刘炫志, 韩世礼, 马 强. 碳酸盐岩风化过程中高场强元素的地球化学行为研究——来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶, 2018, 37(3): 315-329. doi: 10.11932/karst20180301
引用本文: 冯志刚, 刘炫志, 韩世礼, 马 强. 碳酸盐岩风化过程中高场强元素的地球化学行为研究——来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶, 2018, 37(3): 315-329. doi: 10.11932/karst20180301
FENG Zhigang, LIU Xuanzhi, HAN Shili, MA Qiang. Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: Evidence from leaching experiment on carbonate rock[J]. CARSOLOGICA SINICA, 2018, 37(3): 315-329. doi: 10.11932/karst20180301
Citation: FENG Zhigang, LIU Xuanzhi, HAN Shili, MA Qiang. Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: Evidence from leaching experiment on carbonate rock[J]. CARSOLOGICA SINICA, 2018, 37(3): 315-329. doi: 10.11932/karst20180301

碳酸盐岩风化过程中高场强元素的地球化学行为研究——来自碳酸盐岩淋溶实验的证据

doi: 10.11932/karst20180301
基金项目: 国家自然科学基金项目(41373115);南华大学“蒸湘学者计划”项目

Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: Evidence from leaching experiment on carbonate rock

  • 摘要: 选择黔中地区的一条白云岩原位风化剖面(平坝剖面)作为研究对象,通过对岩-土界面之下的岩粉层(砂状碳酸盐岩)动态淋溶过程中高场强元素(HFSE)地球化学行为的研究,并结合其在风化壳剖面的分布特征,获得了以下主要认识:(1)碳酸盐岩风化过程中,HFSE间存在明显的分馏,而且元素分馏主要出现在岩-土界面作用过程中,即碳酸盐岩溶蚀形成残积土阶段;元素的地球化学惰性由强到弱的顺序依次为Zr>Hf>Nb>Sc>Th>Ta>Ti>Y,其中,Zr是最稳定的元素,Hf仅次于Zr,Nb和Sc也相对较为惰性,而Th、Ta、Ti、Y呈现出明显的活性;(2)对于碳酸盐岩风化剖面的质量平衡计算,Zr是理想的参比元素(即惰性元素);(3)由基岩酸不溶物至风化壳剖面,元素对Nb-Ta、Zr-Hf显示出较好的协变性,没有明显分馏,因此,在利用这类元素对岩溶区风化壳的物源进行示踪时,碳酸盐岩作为潜在母岩,宜采用其酸不溶物作为参比对象;(4)碳酸盐岩风化过程中,虽然Sc也是一个较为稳定的HFSE,但在风化母岩中分布不均匀,不宜用于岩溶区风化壳的物源示踪。

     

  • [1] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [2] Durn G. Terra Rossa in the Mediterranean region: parent materials, composition and origin [J].Geologia Croatica, 2003, 56(1): 83-100.
    [3] Gong Q, Zhang G, Zhang J, et al. Behavior of REE fractionation during weathering of dolomite regolith profile in southern China [J]. Acta Geologica Sinica (English Edition), 2010, 84(6): 1439-1447.
    [4] Liu W-J, Liu C-Q, Zhao Z-Q, et al. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on YunnanGuizhou Plateau, China: Implications for chemical weathering and parent materials [J]. Journal of Asian Earth Sciences, 2013, 67-68: 138-152.
    [5] Muhs D R, Bush C A, Stewart K C, et al. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands [J]. Quaternary Research, 1990, 33(2): 157-177.
    [6] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution [M]. London: Blackwell, 1985:57-72.
    [7] 曹星星, 吴攀, 王志强, 等. 岩溶地区红土与碳酸盐岩上覆地层相关性及其指示意义:以贵阳乌当区剖面为例[J]. 地球与环境, 2012, 40(1): 57-62.
    [8] 张风雷, 季宏兵, 魏晓, 等. 黔中白云岩风化剖面微量元素的地球化学特征[J]. 地球与环境, 2014, 42(5): 611-619.
    [9] 张莉, 季宏兵, 高杰, 等. 贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征[J]. 地球化学, 2015, 44(4): 323-336.
    [10] Dinis P A, Dinis J L, Mendes M M, et al. Geochemistry and mineralogy of the Lower Cretaceous of the Lusitanian Basin (western Portugal): Deciphering palaeoclimates from weathering indices and integrated vegetational data [J]. Comptes Rendus Geoscience, 2016, 348(2): 139-149.
    [11] Menozzi D, Dosseto A, Kinsley L P J. Assessing the effect of sequential extraction on the uranium-series isotopic composition of a basaltic weathering profile[J]. Chemical Geology, 2016, 446: 126-137.
    [12] Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metosomatic hydrochemical systems: Results on weathering and pedogenesis [J]. Geochimica et Cosmochimica Acta, 1987,51(3):567-587.
    [13] Delvigne C, Opfergelt S, Cardinal D, et al. Desilication in Archean weathering processes traced by silicon isotopes and Ge/Si ratios [J]. Chemical Geology, 2016, 420: 139-147.
    [14] Egli M, Fitze P. Quantitative aspects of carbonate leaching of soils with differing ages and climates [J]. Catena,2001,46(1):35-62.
    [15] Hewawasam T, von Blanckenburg F, Bouchez J, et al. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka [J]. Geochimica et Cosmochimica Acta, 2013, 118: 202-230.
    [16] Ling S, Wu X, Ren Y, et al. Geochemistry of trace and rare earth elements during weathering of black shale profiles in Northeast Chongqing, Southwestern China: Their mobilization, redistribution, and fractionation[J]. Chemie der Erde, 2015,75(3):403-417.
    [17] Liu W, Liu C, Brantley S L, et al. Deep weathering along a granite ridgeline in a subtropical climate [J]. Chemical Geology, 2016, 427: 17-34.
    [18] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite [J]. Nature, 1979, 279: 206-210.
    [19] Wei X, Ji H, Wang S, et al. The formation of representative lateritic weathering covers in south-central Guangxi (southern China) [J]. Catena, 2014, 118: 55-72.
    [20] Zhang Z-J, Liu C-Q, Zhao Z-Q, et al. Behavior of redox-sensitive elements during weathering of granite in subtropical area using X-ray absorption fine structure spectroscopy [J]. Journal of Asian Earth Sciences, 2015, 105: 418-429.
    [21] Ji H, Ouyang Z, Wang S, et al. Element geochemistry of weathering profile of dolomitite and its applications for the average chemical composition of the upper-continental crust [J]. Science in China (Series D), 2000, 43(1): 23-35.
    [22] Ji H, Wang S, Ouyang Z, et al. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou PlateauⅠ. The formation of the Pingba profile [J]. Chemical Geology, 2004, 203(1):1-27.
    [23] 王世杰, 孙承兴, 冯志刚, 等. 发育完整的灰岩风化壳及其矿物学与地球化学特征[J]. 矿物学报, 2002, 22(1): 19-29.
    [24] 孙承兴, 王世杰, 刘秀明, 等. 碳酸盐岩风化壳岩土界面地球化学特征及其形成过程:以贵州花溪灰岩风化壳剖面为例[J]. 矿物学报, 2002, 22(2): 126-132.
    [25] Wang S, Ji H, Ouyang Z, et al. Preliminary study on weathering and pedogenesis of carbonate rock [J]. Science in China (Ser. D), 1999, 42(6): 572-581.
    [26] Feng J-L, Zhu L-P, Cui Z-J. Quartz features constrain the origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau, China [J]. Journal of Asian Earth Sciences, 2009, 36(2-3): 156-167.
    [27] Feng J-L. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering [J]. Chemical Geology, 2010, 271(3-4):112-132.
    [28] Feng J-L. Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa overlying dolomite: Their mobilization, redistribution and fractionation [J]. Journal of Geochemical Exploration, 2011, 108(1):99-111.
    [29] Feng J-L, Cui Z-J, Zhu L-P. Origin of terra rossa over dolomite on the Yunnan-Guizhou Plateau,China[J]. Geochemical Journal, 2011, 43(3):151-166.
    [30] Feng J-L, Gao S-P, Zhang J-F. Lanthanide tetrad effect in ferromanganese concretions and terra rossa overlying dolomite during weathering [J]. Chemie Der Erde-Geochemistry, 2011, 71(4): 349-362.
    [31] 冯志刚, 王世杰, 孙承兴, 等. 岩溶地区缺失原岩残余结构红色风化壳的粒度分布特征及成因指示:以贵州平坝为例[J]. 矿物学报, 2002, 22(3): 243-248.
    [32] 季宏兵, 王世杰. 黔中白云岩风化剖面的钕、锶同位素组成及演化[J]. 自然科学进展, 2008, 18(10): 1128-1135.
    [33] 姜立君, 王世杰, 刘秀明, 等. 贵州碳酸盐岩风化壳中晶体石英的硅同位素组成及硅质来源探讨[J]. 地球与环境, 2009, 37(1): 20-27.
    [34] 刘秀明, 王世杰, 冯志刚, 等.石灰土物质来源的判别:以黔北、黔中几个剖面为例[J]. 土壤, 2004, 36(1): 30-36.
    [35] 刘春茹, 刘秀明, 王世杰, 等. 贵州碳酸盐岩风化壳物源判别的新证据:石英颗粒形态、表面结构特征 [J]. 矿物学报, 2007, 27(1): 49-56.
    [36] 孙承兴, 王世杰, 季宏兵. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理[J]. 地球化学, 2002, 31(2): 119-128.
    [37] Berner R A, Lasaga A C. Modeling the geochemical carbon cycle [J]. Scientific American, 1989, 222(3): 74-82.
    [38] Liu Z, Groves C, Yuan D, et al. Hydrochemical variations during flood pulses in the southwest China peak cluster karst: impacts of CaCO?-H2O-CO2 interactions [J]. Hydrological Processes, 2004, 18(13): 2423-2437.
    [39] Jacobsona A D, Andrews M G, Lehn G O, et al. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes [J]. Earth and Planetary Science Letters, 2015, 416: 132-142.
    [40] 冯志刚,马强,韩世礼,胡杨,段先哲,谢焱石,陈亮. 一种动态淋溶残余物取样装置.实用新型专利. 专利号: ZL201621071222.3; 授权日: 2017.3.15.
    [41] Garzanti E, Resentini A. Provenance control on chemical indices of weathering (Taiwan river sands) [J]. Sedimentary Geology, 2016, 336: 81-95.
    [42] Ellingboe J, Wilson J. A quantitative separation of non-carbonate minerals from carbonate minerals [J]. Journal of Sedimentary Petrologry, 1964, 2: 412-418.
    [43] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutite [J]. Nature, 1982, 299: 715-717.
    [44] McLennan S M. Weathering and global denudation [J]. Journal of Geology, 1993,101(2):295-303.
    [45] Sugitani K, Horiuchi Y, Adachi M, et al. Anomalously low Al2O3/TiO2 values for Archean cherts Pilbara Block, Western Australia—Possible evidence for chemical weathering on the early earth [J]. Precambrian Research,1996,80(1-2):49-76.
    [46] White F, Blum E, Schulz S, et al. Chemical weathering rates of a soil chronosequence on granitic alluvium:Ⅰ. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates [J]. Geochim Cosmochim Acta, 1996, 60(14):2533-2550.
    [47] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering [J]. Geochimica et Cosmochimica Acta, 1980,44(11):1659-166.
    [48] Glassford D K, Semeniuk V. Desert-aeolian origin of late Cenozoic regolith in arid and semi-arid Southwestern Australia [J]. Palaeography, Palaeoclimatology, Palaeoecology, 1995, 114(2-4):131-166.
    [49] Fedoroff N. Clay illuviation in Red Mediterranean soils [J]. Catena, 1997, 28(3-4): 171-189.
    [50] Ji H, Wang S, Ouyang Z, et al. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II. The mobility of rare earth elements during weathering [J]. Chemical Geology, 2004,203(1):29-50.
    [51] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storge of element in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
  • 加载中
计量
  • 文章访问数:  2092
  • HTML浏览量:  657
  • PDF下载量:  854
  • 被引次数: 0
出版历程
  • 发布日期:  2018-06-25

目录

    /

    返回文章
    返回