• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SDSM的珠江中上游气候模拟及未来情景预估

许 燕 王世杰 白晓永 李雄耀 史晓明 田义超 吴路华

许 燕, 王世杰, 白晓永, 李雄耀, 史晓明, 田义超, 吴路华. 基于SDSM的珠江中上游气候模拟及未来情景预估[J]. 中国岩溶, 2018, 37(2): 228-237. doi: 10.11932/karst20180209
引用本文: 许 燕, 王世杰, 白晓永, 李雄耀, 史晓明, 田义超, 吴路华. 基于SDSM的珠江中上游气候模拟及未来情景预估[J]. 中国岩溶, 2018, 37(2): 228-237. doi: 10.11932/karst20180209
XU Yan, WANG Shijie, BAI Xiaoyong, LI Xiongyao, SHI Xiaoming, TIAN Yichao, WU Luhua. Simulation of future scenarios of climate change in the middle and upper reaches of the Peal River using the Statistical Down Scaling Model (SDSM)[J]. CARSOLOGICA SINICA, 2018, 37(2): 228-237. doi: 10.11932/karst20180209
Citation: XU Yan, WANG Shijie, BAI Xiaoyong, LI Xiongyao, SHI Xiaoming, TIAN Yichao, WU Luhua. Simulation of future scenarios of climate change in the middle and upper reaches of the Peal River using the Statistical Down Scaling Model (SDSM)[J]. CARSOLOGICA SINICA, 2018, 37(2): 228-237. doi: 10.11932/karst20180209

基于SDSM的珠江中上游气候模拟及未来情景预估

doi: 10.11932/karst20180209
基金项目: 国家重点研发计划(2016YFC0502300、2016YFC0502102);国家973计划(2013CB956700);国家科技支撑计划(2014BAB03B02);国家自然科学基金(U1612441、41571130074 & 1571130042);贵州省农业攻关计划(2014-3039;中国科学院院地合作项目2014-3);贵阳市科技攻关计划(2012-205)

Simulation of future scenarios of climate change in the middle and upper reaches of the Peal River using the Statistical Down Scaling Model (SDSM)

  • 摘要: 预估喀斯特生态脆弱区的未来气候变化对于区域资源的合理开发利用及生态环境保护具有重要参考价值,而目前应用降尺度方法模拟喀斯特地区的未来气候情景仍存在较大的探讨空间。本文依据珠江流域红柳江区13个气象站1961-2001年的实测日气温、日降水量资料和全球大气NCEP再分析资料,采用SDSM模型预测流域在HadCM3模式SRES A2和B2两种排放情景下未来年份气温和降水的变化趋势。结果表明:(1)SDSM模型可以较为准确地模拟研究区的气温和降水变化,确定性系数分别可达99%和65%左右;(2)A2、B2两种情景下,21世纪气温和降水均表现出明显的上升趋势,且随时间推移增幅逐渐增大。截至21世纪末,A2、B2两种情景下的年平均气温变化分别为+3.39 ℃和+2.49 ℃,日均降水将分别增加117.30 %和80.90 %;(3)未来的气温上升以秋季和春季变化最为明显,降水则表现为夏季降水增幅最大。分析成果可为喀斯特区的气候变化影响评价与应对决策提供数据基础和理论依据。

     

  • [1] Varis O,Kajander T,Lemmela R. Climate and water: From climate models to water resources management and vice versa[J]. Climatic Change, 2004, 66(3):321-344.
    [2] Wilby R L,Whitehead P G,Wade A J,et al. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK[J]. Journal of Hydrology, 2006, 330(1-2):204-220.
    [3] Wilby R L,Wigley T M L. Downscaling general circulation model output: a review of methods and limitations[J]. Progress in Physical Geography, 1997, 21(4):530-548.
    [4] Mearns L O,Bogardi I,Giorgi F,et al. Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling[J]. Journal of Geophysical Research-Atmospheres, 1999, 104(D6):66036621.
    [5] 范丽军,符淙斌,陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005(3):320329.
    [6] Hay L E,Clark M P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States[J]. Journal of Hydrology, 2003, 282(1-4):56-75.
    [7] Boe J,Terray L,Habets F,et al. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies[J]. International Journal of Climatology, 2007, 27(12):1643-1655.
    [8] Chen S T,Yu P S,Tang Y H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis[J]. Journal of Hydrology, 2010, 385(1-4):13-22.
    [9] Chu J T,Xia J,Xu C Y,et al. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China[J]. Theoretical and Applied Climatology, 2010, 99(1-2):149-161.
    [10] Teutschbein C,Wetterhall F,Seibert J. Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale[J]. Climate Dynamics, 2011, 37(9-10):2087-2105.
    [11] Wilby R L,Dawson C W,Barrow E M. SDSM - a decision support tool for the assessment of regional climate change impacts[J]. Environmental Modelling & Software, 2002, 17(2):147-159.
    [12] Khan M S,Coulibaly P,Dibike Y. Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors[J]. Hydrological Processes, 2006, 20(14):3085-3104.
    [13] Huang J,Zhang J C,Zhang Z X. Simulation of extreme precipitation indices in the Yangze River basin by using statistical down scaling method(SDSM)[J]. Theoretical and Applied Climatology, 2012, 108:325-343.
    [14] 徐影,丁一汇,赵宗慈. 近30年人类活动对东亚地区气候变化影响的检测与评估[J]. 应用气象学报, 2002(5):513-525.
    [15] 施小英,徐祥德,徐影. 中国600个站气温和IPCC模式产品气温的比较[J]. 气象, 2005(7):49-53.
    [16] 苏志侠,吕世华,罗四维. 美国NCEP/NCAR 40年全球再分析资料及其解码和图形显示软件简介[J]. 高原气象, 1999 (2):74-83.
    [17] Wilby R L,Hassan H,Hanaki K. Statistical downscaling of hydrometeorological variables using general circulation model output[J]. Journal of Hydrology, 1998,205(1-2):1-19.
    [18] 陈威霖,江志红,黄强. 基于统计降尺度模型的江淮流域极端气候的模拟与预估[J]. 大气科学学报, 2012(5):578-590.
    [19] Hessami M,Gachon P,Ouarda T B M J,et al. Automated regression-based statistical downscaling tool[J]. Environmental Modelling & Software, 2008, 23(6):813-834.
    [20] Sascha S. Downscaling Local Extreme Temperature Changes in South- eastern Australia From the CS IRO M ARK2 GCM[J]. International Journal of Climatology, 1998, 18:1419-1438.
    [21] Wetterhall F,Halldin S,Xu C Y. Seasonality properties of four statistical-downscaling methods in central Sweden[J]. Theoretical and Applied Climatology, 2007, 87(1-4):123-137.
    [22] 郝振纯,时芳欣,王加虎. 统计降尺度法在黄河源区未来降水变化分析中的应用[J]. 水电能源科学, 2011 (3):2-4.
    [23] 王晓燕,杨涛,郝振纯. 基于统计降尺度的黄河源区气象极值预测[J]. 水电能源科学, 2011(4):1-5.
    [24] 姜大膀,王会军,郎咸梅. 全球变暖背景下东亚气候变化的最新情景预测[J]. 地球物理学报, 2004(4):590-596.
    [25] Houghton J T,Ding Y,Griggs D J,et al. Climate change 2001: The scientific basis[R]. Cambridge:Cambridge University Press,2001:944.
    [26] 许吟隆,薛峰,林一骅. 不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析[J]. 气候与环境研究, 2003(2):209-217.
  • 期刊类型引用(10)

    1. 徐凡奇,赵阳,王兴平,董贵明,乔宇轩,鞠琴,王振龙. SDSM在黄河流域水源涵养区降水和气温降尺度预报中的适用性. 河海大学学报(自然科学版). 2025(02): 19-28 . 百度学术
    2. 赵良杰,王莹,周妍,曹建文,杨杨,王喆. 基于SWAT模型的珠江流域地下水资源评价. 地球科学. 2024(05): 1876-1890 . 百度学术
    3. 王雅琳,董晓华,喻丹,董立俊,杨晨,秦兴隔. 基于MIROC气候模式的统计降尺度偏差订正方法及在雅砻江流域的应用. 中国农村水利水电. 2023(06): 66-73+78 . 百度学术
    4. 赵良杰,杨杨,曹建文,夏日元,王喆,栾崧,林玉山. 珠江流域地下水资源评价及问题分析. 中国地质. 2021(04): 1020-1031 . 百度学术
    5. 欧阳芬,王卓,肖丽英. 两套再分析数据在鄱阳湖流域的不确定性研究. 南昌工程学院学报. 2020(03): 8-14 . 百度学术
    6. 袁林山,张家余,张力,刘德地. 气候变化对水电站发电出力的影响研究. 中国农村水利水电. 2020(09): 231-235 . 百度学术
    7. 喻雪晴,穆振侠,周育琳. 不同降水降尺度方法在天山西部区域的适用性评估. 中国农村水利水电. 2020(10): 21-28 . 百度学术
    8. 李薇,龚奂彰,时利香,王信粉,郭军红. 基于区域气候模式的内蒙古地区风能资源预测评估. 电网技术. 2020(11): 4318-4327 . 百度学术
    9. 蒋林杉,华婧婧,唐秋艳,王焕毅,刘闯. B2气候情境下辽宁农业气候资源演变特征探讨. 农业与技术. 2020(22): 106-108 . 百度学术
    10. 董立俊,董晓华,曾强,魏冲,喻丹,薄会娟,郭靖. 气候变化条件下雅砻江流域未来径流变化趋势研究. 气候变化研究进展. 2019(06): 596-606 . 百度学术

    其他类型引用(16)

  • 加载中
计量
  • 文章访问数:  2340
  • HTML浏览量:  536
  • PDF下载量:  885
  • 被引次数: 26
出版历程
  • 发布日期:  2018-04-25

目录

    /

    返回文章
    返回