Hydrochemical characteristics and geochemical sensitivity of groundwater in typical karst hilly regions:A case study of Eastern Wugang
-
摘要: 通过对典型岩溶丘陵区地下水进行水化学特征及地球化学敏感性的研究表明,该地下水系统水化学特征阳离子以Ca2+、Mg2+为主,阴离子以HCO3-、NO3-、SO42-为主,受水岩作用及人类活动共同影响;Mg2+/Ca2+受岩性控制,流经白云岩地层最高,灰岩夹白云岩次之,灰岩最低;研究区岩溶地下水表现出较高的地球化学敏感性。阳离子以Ca2+最为敏感,其次为Mg2+,阴离子以HCO3-最为敏感,其次为NO3-,元素的地球化学敏感性大小依次为:HCO3->Ca2+>Mg2+>NO3->SO42->Cl->Na+>K+;以敏感性最强的敏感因子HCO3-对研究区岩溶地下水进行敏感性等级划分。研究区低敏感性的水点仅占7.27%,中敏感性的水点占25.45%,高敏感性的水点占67.28%。通过地球化学敏感性划分统计结果显示,对该地区地下水的保护显得十分重要且迫切。Abstract: This study investigated hydrochemical characteristics and geochemical sensitivity of groundwater in a typical karst hilly region. The results indicate that Ca2+ and Mg2+ are the main cations and HCO3- and NO3- are the main anions in the karst groundwater system, which are affected by water-rock interaction and human activities; groundwater system, which is affected by water-rock interaction and human activities. The result also indicates the ratio of Mg2+/ Ca2+, controlled by lithology, is the highest in the dolomite second highest in the limestone dolomite, and the lowest in limestone. In general, the karst groundwater in the study area shows a high geochemical sensitivity which follows the order as HCO3->Ca2+>Mg2+>NO3->SO42->Cl->Na+>K+. In particular,the cation Ca2+ is the most sensitive, followed by Mg2+, while HCO3- is the most sensitive inthe anions, followed by NO3-. The sensitivity level of the karst groundwater in the study area is classified by the most sensitive factor HCO3-. Consequently, the low sensitive water spots account for only 7.27%, the medium sensitive ones account for about 25.45%, while the highly sensitive account for about 67.28%. These statistic results of the geochemical sensitivity division show that the protection of groundwater is very important and urgent.
-
Key words:
- karst hilly area /
- groundwater /
- water chemistry /
- geochemistry /
- sensitivity
-
[1] 袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展,1997(5):93-97. [2] 蒋忠诚,夏日元,时坚,等.西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报,2006,27(5):495-502. [3] 袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13):1210-1213. [4] 杨明德.论喀斯特环境的脆弱性[J].云南地理环境研究,1990,2(1):21-29. [5] GoldscheiderN.Karst groundwater vulnerability mapping:application of a new method in the SwabianAlb,Germany[J].Hydrogeol J,2005,13(4): 555-564. [6] AndreoB,GoldscheiderN,VadilloI,etal.Karstgroundwaterprotection: First application of a Pan-European Approach to vulnerability,hazard and risk mapping in the Sierra de Líbar(Southern Spain)[J]. Sci Total Environ,2006,357(1): 54-73. [7] 郎赟超,刘丛强,Satake H,等.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2): 151-159. [8] 蒋勇军,吴月霞,Groves C,等.利用因子分析确定岩溶地下河系统水质的影响因素[J].水文地质工程地质,2009,36(4):1-7. [9] 何守阳,朱立军,董志芬,等.典型岩溶地下水系统地球化学敏感性研究[J].环境科学,2010,31(5):1176-1182. [10] 任坤,师阳,李晓春,等.典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J].中国岩溶,2014,33(1):15-21. [11] 徐尚全,杨平恒,殷建军,等.重庆雪玉洞岩溶地下河地球化学敏感性研究[J].环境科学,2013,34(1):77-83. [12] 尹辉,蒋忠诚,罗为群,等.湘中丘陵区水土保持效益综合评价[J].中国水土保持,2010,12:50-53. [13] 裴建国,谢运球,章程,等.湘中溶蚀丘陵区示踪实验:以湖南新化为例[J].中国岩溶,2000,19(4):366-371. [14] 章程.南方典型溶蚀丘陵系统现代岩溶作用强度研究[J].地球学报,2000(1):86-91. [15] 袁建飞,邓国仕,徐芳,等.毕节市北部岩溶地下水水文地球化学特征[J].水文地质工程地质,2016,43(1):12-21. [16] 张群利,郭会荣,吴孔军,等.荥巩矿区岩溶地下水系统的水文地球化学特征及其指示意义[J].水文地质工程地质,2011,38(2):1-7. [17] 徐慧珍,段秀铭,高赞东,等.济南泉域排泄区岩溶地下水水化学特征[J].水文地质工程地质,2007,34(3):15-19. [18] 贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶区岩溶水质的影响:以涪陵丛林岩溶槽谷区为例[J].自然资源学报,2004,19(4):455-461. [19] 张军以,王腊春,苏维词,等.岩溶地区人类活动的水文效应研究现状及展望[J].地理科学进展,2014,33(8):1125-1135. [20] 樊连杰,裴建国,邹胜章,等.重庆市南川区南部岩溶地下水水文地球化学特征[J].中国岩溶,2017,36(5):697-703. [21] MA R,WANG Y X,SUN Z Y,et al.Geochemicalevalution of groundwater in carbonate aquifers in Taiyuan,north China[J].Applied Geochemistry,2011,26(5):884-897. [22] 李华,文章,谢先军,等.贵阳市三桥地区岩溶地下水水化学特征及其演化规律[J].地球科学,2017,42(5):804-812. [23] 叶慧君,张瑞雪,吴攀,等.基于主成分分析的岩溶水化学组成及影响因素研究:以贵州水城盆地为例[J].中国岩溶,2017,36(2):215-225. [24] 万利勤,徐慧珍,殷秀兰,等.济南岩溶地下水化学成分的形成[J].水文地质工程地质,2008,35(3):61-64. [25] 殷秀兰,王庆兵,凤蔚.济南岩溶泉域泉群水化学与环境同位素研究[J].地质学报,2017,91(7):1651-1660. [26] 樊连杰,裴建国,邹胜章,等.重庆市南川区南部岩溶地下水水文地球化学特征[J].中国岩溶,2017,36(5):697-703.
点击查看大图
计量
- 文章访问数: 2202
- HTML浏览量: 644
- PDF下载量: 788
- 被引次数: 0