Hydrochemical characteristics and sources of Nanpanjiang and Beipanjiang river basins during dry seasons
-
摘要: 为进一步了解珠江上游南、北盘江流域水化学现状,对其枯水期36个河水样品进行水化学特征分析,结果表明:枯水期河水pH值在7.85~8.75之间,呈弱碱性,TDS均值为358 mg·L-1。河水中阴离子组成以HCO3-、SO42-为主,当量浓度占比均值达到65%与26%,阳离子中Ca2+和Mg2+是绝对的优势离子,当量浓度占比均值分别为65%和24%。与丰水期相关研究对比分析发现Ca2+、Mg2+、Na+、SO42-、HCO3-、Cl-的枯水期浓度普遍高于丰水期,K+、NO3-丰、枯水期浓度变化不大。Piper图、岩性端元分析以及离子浓度比值分析表明,研究区水化学主要受碳酸和硫酸共同参与下的碳酸盐岩风化控制。南、北盘江流域都受到农业施用的钾肥和氮肥的影响,此外,北盘江主要受到煤炭开采以及燃煤工业的影响,南盘江主要受到源头及上游河段化工企业废水和沿途市县的生活废水的影响。与前人数据对比发现,15年间人为活动对流域水化学的影响加剧。Abstract: Water samples were collected in dry seasons to analyze the hydrochemical components of Nanpanjiang and Beipanjiang basins, the upper reaches of the Pearl River. The results show that pH values of the water from the two catchments,ranges from7.85 to 8.75 during dry seasons, slightly alkaline,with an average TDS of 358 mg·L-1. The anions are dominated by HCO3- and SO42- with the mean equivalent concentration accounting for 65% and 26% of the total anions, respectively. The main cations are Ca2+and Mg2+, accounting for 65% and 24% of the total cations, respectively. Compared with the research about the concentrations of major ions in wet seasons, the concentrations of Ca2+, Mg2+, Na+, SO42-, HCO3-, and Cl- in dry seasons are higher, while K+ and NO3- contents almost remain the same. Piper diagrams, end members of lithology and ion concentration ratios collectively indicate that the chemical composition of river water is mainly controlled by carbonate weathering where sulfuric acid and carbonic acid both participate. Nanpanjiang and Beipanjiang are all influenced by agricultural activities. In addition, Beipangjiang is mainly affected by coal mining and coal-combustion industry, while Nanpanjiang is mainly affected by wastewater from industries at upper reach and the cities and towns along the river. Compared with previous data, it is found that the impact of anthropogenic activities on water has increased over the past 15 years.
-
Key words:
- Nanpanjiang and Beipanjiang /
- water chemistry /
- ion sources /
- anthropogenic activities /
- rock weathering
-
[1] Millot R,Gaillardet J,Dupré B,et al. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield[J]. Earth & Planetary Science Letters, 2002, 196(1-2):83-98. [2] Han G,Liu C Q. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004, 204(1):1-21. [3] Meybeck M . Global Occurrence of Major Elements in Rivers[J]. Treatise on Geochemistry, 2003,5(1):207-223. [4] Stallard R F,Edmond J M. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge[J]. Journal of Geophysical Research Oceans, 1981, 86(C10):9844-9858. [5] Sarin M M,Krishnaswami S,Dilli K,et al. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal[J]. Geochimica Et Cosmochimica Acta, 1989, 53(5):997-1009. [6] Reeder S W ,Hitchon B,Levinson A A . Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-I. Factors controlling inorganic composition[J]. Geochimica Et Cosmochimica Acta, 1972, 36(8):825-865. [7] Gordeev V V,Sidorov I S . Concentrations of major elements and their outflow into the Laptev Sea by the Lena River[J]. Marine Chemistry, 1993, 43(1-4):33-45. [8] Meybeck M. Riverine quality at the Anthropocene: Propositions for global space and time analysis, illustrated by the Seine River[J]. Aquatic Sciences, 2002, 64(4):376-393. [9] 陈静生,关文荣,夏星辉,等. 长江干流近三十年来水质变化探析[J]. 环境化学, 1998(1):8-13. [10] 夏学齐,杨忠芳,王亚平,等. 长江水系河水主要离子化学特征[J]. 地学前缘, 2008, 15(5):194-202. [11] 过常龄. 黄河流域河流水化学特征初步分析[J]. 地理研究, 1987, 6(3):65-73. [12] 李群,穆伊舟,周艳丽,等. 黄河流域河流水化学特征分布规律及对比研究[J]. 人民黄河, 2006, 28(11):26-27. [13] 陈静生,王飞越,何大伟. 黄河水质地球化学[J]. 地学前缘, 2006, 13(1):58-73. [14] 王兵,李心清,袁洪林,等. 黄河下游地区河水主要离子和锶同位素的地球化学特征[J]. 环境化学, 2009, 28(6):876-882. [15] 邬建中,黄爱珠. 珠江水系天然水化学特性[J]. 人民珠江, 1989(2):14-18. [16] 陈静生,何大伟. 珠江水系河水主要离子化学特征及成因[J]. 北京大学学报(自然科学版), 1999, 35(6):786-793. [17] 张利田. 珠江水系河水主要离子三角组分图分析[J]. 中山大学学报(自然科学版), 2000, 39(3):102-105. [18] 王兵,李心清,袁洪林,等. 西江干流河水主要离子及锶同位素地球化学组成特征[J]. 地球化学, 2009, 38(4):342-350. [19] Yu S,Du W,Sun P,et al. Study on the hydrochemistry character and carbon sink in the middle and upper reaches of the Xijiang River basin, China[J]. Environmental Earth Sciences, 2015, 74(2):997-1005. [20] 赵彦龙,董曼玲,丁文慈,等. 西江干流梧州:肇庆段水化学特征研究[J]. 广东微量元素科学, 2014(12):1-6. [21] 文泽伟,汝旋,谢彬彬,等. 龙江-柳江-西江流域的水化学特征及其成因分析[J]. 环境化学, 2016, 35(9):1853-1864. [22] Xu Z,Liu C Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China[J]. Chemical Geology, 2007, 239(1):83-95. [23] 吴起鑫,韩贵琳,李富山,等. 珠江源区南、北盘江丰水期水化学组成特征及来源分析[J].环境化学,2015,34(7):1289-1296. [24] 荆春燕,许海平. 南盘江流域水污染控制研究[J]. 环境科学导刊, 2002, 21(2):24-25. [25] 张利田,陈永勤. 西江干流近20年来水质变化趋势研究[J]. 中山大学学报(自然科学版), 2002, 41(4):97-100. [26] 王勇,代兴兰. 南盘江上段水环境质量评价及水质变化趋势分析[J]. 人民长江, 2016, (s1):38-41. [27] 刘朋雨,胡宝清,覃小群,等. 南盘江流域不同类型水水文地球化学特征[J]. 广西师范学院学报(自然科学版), 2013(1):63-69. [28] 沈诚,罗维,佘朝雯. 贵州省南北盘江流域地下水污染现状研究[J]. 云南地理环境研究, 2011, 23(4):91-94. [29] 刘璐璐,曹巍,邵全琴. 南北盘江森林生态系统水源涵养功能评价[J]. 地理科学, 2016(4):603-611. [30] 魏科技,姜海萍,王伟,等. 南盘江流域水资源特征分析及保护对策研究[J]. 人民珠江, 2013, 34(1):14-14. [31] 陈文贵. 南北盘江地区水土流失危害与防治对策[J]. 水土保持研究, 2000, 7(3):101-103. [32] 周家维. 南、北盘江流域(贵州部分)土地退化类型及机理[J]. 贵州林业科技, 2005, 33(4):6-10. [33] 张宏. 曲靖市境内南盘江水质变化趋势及影响因素分析[J]. 环境科学导刊, 2013, 32(4):59-63. [34] 马利英,武艺,徐磊,等. 北盘江贵州段煤炭污染型河流水质污染现状分析[J]. 图书情报导刊, 2011, 21(14):141-144. [35] 侯祎亮,安艳玲,吴起鑫,等. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(7):1121-1128. [36] 韩贵琳,刘丛强. 贵州乌江水系的水文地球化学研究[J]. 中国岩溶, 2000, 19(1):35-43. [37] Meybeck M,Ragu A. River discharges to the oceans: an assessment of suspended solids, major ions and nutrients[J]. 1996, [38] Spence J,Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes:Evidence from major ions, δ13CDIC , and δ34S SO4 in rivers of the Canadian Cordillera[J]. Geochimica Et Cosmochimica Acta, 2005, 69(23):5441-5458. [39] 吴起鑫,韩贵琳,陶发祥,等. 西南喀斯特农村降水化学研究:以贵州普定为例[J]. 环境科学, 2011, 32(1):26-32. [40] 武艺,马利英. 煤炭污染型河流底质污染现状分析:以北盘江贵州段为例[J]. 贵州大学学报:自然科学版, 2009, 26(5):130-134. [41] Moon S,Huh Y,Qin J,et al. Chemical weathering in the Hong (Red) River basin:Rates of silicate weathering and their controlling factors[J]. Geochimica Et Cosmochimica Acta, 2007, 71(6):1411-1430. [42] Gaillardet J,Dupré B,Louvat P,et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1-4):3-30. [43] Xu Z,Liu C Q. Water geochemistry of the Xijiang basin rivers, South China:Chemical weathering and CO2 consumption[J]. Applied Geochemistry, 2010, 25(10):1603-1614. [44] 秦勇,张东,赵志琦. 沁河流域水化学组成的空间和时间变化特征[J]. 生态学杂志, 2016, 35(6):1516-1524. [45] 刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4):404-414. [46] Li S,Gaillardet J,Han G,et al. Sulfuric acid as a weathering agent of carbonate weathering constrained by δ13C:Examples from Southwest China[J]. Earth & Planetary Science Letters, 2006, 25(1):270-271. [47] Basak B,Alagha O. The chemical composition of rainwater over Büyük-ekmece Lake, Istanbul[J]. Atmospheric Research, 2004, 71(4):275-288. [48] Négrel P,Allègre C J,Dupré B,et al. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case[J]. Earth & Planetary Science Letters, 1993, 120(1-2):59-76. [49] 王鹏,尚英男,沈立成,等. 青藏高原淡水湖泊水化学组成特征及其演化[J]. 环境科学, 2013, 34(3):874-881. [50] Xiao H Y,Liu C Q. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China[J]. Atmospheric Environment, 2002, 36(33):5121-5130.
点击查看大图
计量
- 文章访问数: 1965
- HTML浏览量: 557
- PDF下载量: 1098
- 被引次数: 0