Corrosion effects and environmental correlation of bryophytes on limestone in Guiyang karst park
-
摘要: 以贵阳喀斯特公园南石林为研究区,通过野外调查及实验测定,研究苔藓植物多样性、溶蚀形态和环境因子间的关系,探讨苔藓生物岩溶形成及其对生物地质的意义。结果表明:贵阳喀斯特公园南石林有苔藓14科27属49种,溶蚀结果根据形态可划分为:溶孔、溶坑、溶锥、溶沟、溶槽、溶盆等六种;在溶孔—溶锥—溶坑—溶盆、溶沟—溶坑—溶盆和溶槽—溶坑—溶盆三个阶段中苔藓多样性指数都呈先升后降的趋势,其中溶孔、溶沟和溶槽的苔藓多样性指数最小分别为:6.232、8.524和7.490,在溶坑形态下苔藓植物多样性指数达到最大值为18.219,溶盆形态下其多样性下降至11.949;均匀度呈上升趋势分别从0.880、0.862和0.916上升至0.953,然后在溶盆阶段下降至0.876。环境因子是限制溶蚀形态发生数量的重要因素,在第二等级条件下(温度17.5~21.4 ℃,湿度57.7%~72.6% RH,光照2 700~5 900 Lux)苔藓植物对石灰岩的塑造作用最强。溶蚀形态的变化过程往往伴随着苔藓群落的演替,苔藓植物对溶蚀形态的形成具有很强的塑造作用。Abstract: Bryophytes are important habitants in the karst area, and they are of great significance in biological geology and ecological geology to study the corrosion in karst area. The relationship among bryophyte diversity, dissolution forms and environmental factors was studied in Nanshilin, Guiyang kast park through field investigations and lab experiments, The results show that: 49 taxa in 27 genera of 14 families of bryophytes were identified in the study area. According to the morphology, the corrosion results could be divided into six types: corrosion hole, corrosion pit, corrosion cone, corrosion groove, corrosion trough and corrosion basin. The diversity index of bryophytes showed a tendency of rising first and then decreasing in the following three stages:corrosion hole-corrosion cone-corrosion pit-corrosion basin, corrosion groove- corrosion pit-corrosion basin and corrosion trough-corrosion pit-corrosion basin,of which the minimum indices of bryothytes diversity occurred in corrosion hole, corrosion cone and corrosion groove being 6.232, 8.524, and 7.490, respectively. The bryophyte diversity index reached a maximum value of 18.219 in the corrosion pit, and then decreased to 11.949 in corrosion basin. The uniformity showed an upward trend, from 0.880, 0.862, 0.916 to 0.953, then dropped to 0.876 at the stage of corrosion basin. The environment plays an important role in the occurrence of corrosion patterns. Under the second grade condition (temperature of 17.5-21.4 ℃, humidity of 57.7%-72.6%RH, light of 2,700-5,900 Lux), the bryophytes have the strongest shaping effect on limestone. The change of dissolution patterns is often accompanied by the succession of the moss community. The bryophytes have a strong shaping effect on the formation of dissolution patterns.
-
Key words:
- bryophyte, corrosion patterns /
- environmental factors /
- biological geology /
- ecological function /
-
[1] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997(Z1):17-25. [2] 曹建华, 林玉石. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘, 2001, 8(1):203-209. [3] Folk R L, Roberts H H, Moore C H. Black Phytokarst From Hell, cayman islands (b.w.i.)[J]. Geological Society of America Bulletin,1973,84(7):2351-2360. [4] VilesHA.Biokarst-reviewandProspeet[J].PorgressinPhysicalGeography,1984,8(4):523-542. [5] 张朝晖, 王智慧, 祝安. 黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J]. 中国岩溶,1996,15(3):224-232. [6] Viles H A.Blue-green Algae and Terrestrial Limestone Weathering on Alsabra Atoll:A SEMand light Microseopic study[J].EarthSurfaceProcessesandLandforms,1987,12(3):319-330. [7] 张捷, 包浩生. 生物喀斯特及其微形态研究[J]. 地球科学进展, 1995, 10(5):457-463. [8] 李莎, 李福春, 程良娟. 生物风化作用研究进展[J]. 矿产与地质, 2006, 20(6):577-582. [9] 张捷,地衣喀斯特侵蚀作用的初步研究[J]. 地理学报, 1993(5):437-446. [10] 贾丽萍, 李为, 朱敏,等. 典型细菌、真菌、放线菌对石灰岩动态溶蚀效果比较[J]. 应用与环境生物学报, 2007, 13(1):126-130. [11] 连宾, 袁道先, 刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报, 2011, 56(26):2158-2161. [12] 连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1):52-56. [13] 王福星,曹建华.生物岩溶[M].北京:地质出版社,1993. [14] 付兰,张朝晖.贵阳市苔藓植物的生物岩溶溶蚀初探[J].贵州师范大学学报,2010,28(4):140-143. [15] 魏嵬,刘方,向仰州.贵阳市花溪麦坪煤矿废弃地植被调查与分析[J].贵州大学学报:自然科学版,2009,26(2):132-135. [16] 王圳,张金池,于水强,等.退化喀斯特地区植被恢复过程中苔藓的先锋作用[J].南京林业大学学报:自然科学版,2011,35(3):137-140. [17] 曹建华, 王福星. 桂林地区石灰岩表面生物岩溶溶蚀作用研究[J]. 中国岩溶,1993,12(1):11-22. [18] 黄继红. 浅述生物与环境的关系[J]. 发酵科技通讯, 1997(3):25-28. [19] 吴玉环, 黄国宏, 高谦,等. 苔藓植物对环境变化的响应及适应性研究进展[J]. 应用生态学报, 2001, 12(6):943-946. [20] Silvola J, Aaltonen H. Water content and photosynthesis in the peat mosses Sphagnum fuscum and S. angustifolium[J]. Annales Botanici Fennici, 1984, 21(1):1-6. [21] 李军峰, 王智慧, 张朝晖. 喀斯特石漠化山区苔藓多样性及水土保持研究[J]. 环境科学研究, 2013, 26(7):759-764. [22] VITT D H.Patterns of growth of the drought tolerant moss,racomitrium microcarpon,over a three year period[J]Lindbergia,1989,15(6):181-187. [23] 陈坤浩,谢永贵,沈有信,等.黔西北喀斯特区植被自然恢复演替过程中物种多样性研究[J]安徽农业科学,2009,37(23): 11076 -11078. [24] 蔡运龙.中国西南岩溶石山贫困地区的生态重建.[J]地球科学进展,1996,11(6): 602-606. [25] 喻理飞, 朱守谦, 叶镜中,等. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002, 38(1):1-7. [26] 艾应伟, 刘浩, 李伟,等. 苔藓植物资源保护利用中的生态环境效应研究进展[J]. 生态环境学报, 2010, 19(1):227-232. [27] 曹同, 郭水良. 长白山主要生态系统苔藓植物的多样性研究[J]. 生物多样性, 2000, 8(1):50-59. [28] 喻理飞, 叶镜中. 退化喀斯特森林自然恢复评价研究[J]. 林业科学, 2000, 36(6):12-19. [29] 潘莎, 王智慧, 张朝晖,等. 贵州省茅台镇砂页岩结皮层藓类植物的生态功能[J]. 生态学杂志, 2011, 30(9):1930-1934.
点击查看大图
计量
- 文章访问数: 2001
- HTML浏览量: 607
- PDF下载量: 1087
- 被引次数: 0