Research and optimization of metal system device for conventional radioactive 14C dating
-
摘要: 放射性同位素14C测年技术广泛应用于第四纪地质学、考古学、海洋学和古气候等学科。常规14C测年,是采用β衰变低本底液体闪烁计数仪记录一定时间间隔内一定量样品中14C原子衰变数目的方法,由于仪器操作简单、方便,在不受样品量限制的情况下,测试的精度能够满足测年的要求。14C测年液闪法样品制样前处理系统主要在真空玻璃系统中完成,但真空玻璃系统容易出现破碎、断裂,每个实验室需要配备专门的玻璃焊接师傅维护和维修真空玻璃系统,制约着14C测年技术的发展。文章探讨了常规14C制样系统的升级改造,建立了一套金属系统、不用玻璃焊接,无油污染、安装方便、拆卸灵活的常规14C测年样品制备系统,该套系统解决了常规14C发展中遇到的难点问题,使得常规14C测年技术得到更好的推广和应用。Abstract: Radioisotope 14C dating techniques are widely used in quaternary geology, archaeology, oceanography and paleoclimate. The conventional 14C dating method can record the number of 14C atoms by βdecay low background liquid scintillation counter of a certain amount of samples in certain time inteval. As the equipment is simple and convenient, the accuracy of the test can meet the requirement of dating without being limited by the sample weight.The preparation system for 14C dating liquid scintillation method is mainly completed in the vacuum glass system, which is prone to breakage and fracture. Therefore a special welding master is needed in each laboratory to maintain and repair the vacuum glass system, which restricts the development of 14C dating techniques. This paper discusses the upgrading and transformation of the conventional 14C sample preparation system, and has developed a conventional 14C dating metal preparation system with metal material with the advantages of no glass welding, no oil pollution, easy installation and flexible disassembly. This system has solved the problems encountered in the development of conventional 14C dating ,and can help promoting the application of regular 14C dating techniques
-
Key words:
- 14C dating /
- metal system /
- optimization
-
[1] 仇士华, 陈铁梅, 蔡莲珍,等.中国14C年代学研究[M].北京:科学出版社, 1990:1-345. [2] 钱瑞. 论碳十四测年法在考古学的应用和发展[J]. 齐齐哈尔师范高等专科学校学报,2014(4):112-113. [3] 刘俊男,易桂花. 碳十四测年与石家河文化起讫年代问题[J]. 华夏考古, 2014(1):51-61. [4] 何文贵,袁道阳,葛伟鹏,等.祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 2010, 30(1): 131-137. [5] 黄学猛,杜义,何仲太,等.乌兰乌拉湖:玉树断裂东段晚第四纪滑动速率[J]. 地震地质, 2011, 33(4): 889-900. [6] 冉勇康,王虎,杨会丽,等. 中国大陆古地震研究的关键技术与案例解析:古地震定年技术的样品采集和事件年代分析[J]. 地震地质, 2014, 36(4): 939-955. [7] 程鹏,吴书刚,杜花,等. 逐级温度热解法在黄土古土壤样品14C测年中的应用[J].干旱区资源与环境,2012,26(12):81-85. [8] Prevosti M,Lirdroos A,Heinermeier J,et al. AMS 14C dating at Can Ferrerons, a Roman octagonal building in Premià de Mar, Barcelona[J]. Journal of Archaeological Science: Reports, 2016, 6: 275-283. [9] Chen B, Jie D, Shi M,et al. Characteristics of14C and 13C of carbonate aerosols in dust storm eventsin China[J].Atmospheric Research, 2015,164-165:297-303. [10] Xu X, Trumbore S E, Zheng S, et al. Modifying a sealed tube zinc reduction method for preparationof AMS graphite targets: Reducing background andattaining high precision[J]. Nuclear Instruments and Methods in Physics Research B, 2007,259:320-329. [11] 卢耀如.中国岩溶[M]. 北京: 地质出版社, 1986:94-95. [12] 王华, 张会领, 涂林玲,等. 桂林甑皮岩洞穴遗址钙华14C年代学研究[J]. 地球学报, 2005, 26(4):333-336. [13] 石慧馨, 蔡祖煌, 许志藩. 碳酸盐岩地区地下水年龄的同位素研究[J]. 中国岩溶,1988,7(4):302. [14] 王东升, 刘恩凯, 张洪平. 应用环境氚和碳14估算娘子关泉岩溶地下水年龄和汇水区面积[J]. 水文地质工程地质,1991,18(2):2-6. [15] 王成明, 杨询昌, 徐勇,等. 山东省深部岩溶热储地热水同位素特征分析[J]. 山东国土资源, 2013(1):21-24. [16] 仇士华, 蔡莲珍.关于考古系列样品碳十四测年方法的可靠性问题[J].考古, 2001(11):77-79. [17] 国家地震局地质研究所. 放射性14C测年实验技术改造[R]. 1997:1-20. [18] 焦文强, 尹金辉, 郑永刚, 等. 高精度碳十四测年技术[J]. 核电子学与探测技术, 1998(6):419-424. [19] 王华, 饶文波, 杨志清,等. 常规碳十四制样系统及其优化[J]. 岩矿测试, 2007, 26(2): 129-132. [20] Godwin H. HalfLife of Radiocarbon[J].Nature,1962,195(4845):984-984. [21] 第一次全国14C学术会议论文集[M].北京:科学出版社,1984.
点击查看大图
计量
- 文章访问数: 1973
- HTML浏览量: 609
- PDF下载量: 757
- 被引次数: 0