Effects of CO2 concentration gradient on carbonicanhydrase of two karst microalgae
-
摘要: 以经岩溶水驯化的小球藻(Chlorella vulgaris)和喜钙念珠藻(Nostoc calcicola Breb.)为实验对象,在封闭体系中用Willbur和 Anderson 方法比较研究两种不同微藻在不同CO2浓度下碳酸酐酶活性变化情况。结果表明:在低于3%CO2浓度的环境中岩溶微藻可通过快速调节自身碳酸酐酶活性来应对CO2升高带来的生境影响,在影响最大的2.5%的环境下小球藻与喜钙念珠藻碳酸酐酶活性分别提高了1.46倍和2.12倍;岩溶微藻应对CO2浓度增大带来的pH下降有着重要的恢复作用,随培养时间增长培养环境中的pH得到恢复;随着CO2浓度的增大,岩溶因子对碳酸酐酶有着重要的影响;培养48 h时Ca2+与喜钙念珠藻碳酸酐酶的相关性最高,而电导率(EC)与小球藻碳酸酐酶相关程度最高。Abstract: In response to the challenge of global warming, it is important to study karst microalgae and its carbonic anhydrase for greenhouse effect owing to carbon sequestration. Yaji experimental site is an independent karst hydrological-geological system located in the peak-cluster depression and the peak-forest plain border zone. The experiment was conducted on the Chlorella vulgaris and Nostoc calcicola Breb.Cultured on the spring water which sources from the limestone of Rongxian formation, the upper Devonian at the site. We compared the carbonic anhydrase activities of two different microalgae under different carbon dioxide concentrations by using the methods of Willbur and Anderson in a closed system and analyzed the changes of karst factor by using the WTW350i multifunctional water quality analyzer and the hardness and alkalinity kits. The results showed that the karst micro-algae could deal with the habitat impact of elevated carbon dioxide by rapidly regulating its carbonic anhydrase activity in the environment of less than 3% carbon dioxide concentration. The activities of carbonic anhydrase in Chlorella vulgaris was increased by 1.46 times and Nostoc calcicola Breb.was increased by 2.12 times respectively in the environment of 2.5%. The increase of carbon dioxide concentration leads to the change of karst factor, resulting in the decrease of pH, HCO3- and dissolved oxygen (DO) and the increase of electrical conductivity (EC). Karst microalgae play an important role in coping with the decrease of pH and HCO3- induced by the increase of carbon dioxide concentration. With the increase of incubation time, the pH and the HCO3- in the culture environment is recovered, indicating that the karst area is an important participant in response to global warming. With the increase of carbon dioxide concentration, karst factors have an important influence on carbonic anhydrase. The correlation between calcium ion of Nostoc calcicola Breb.and carbonic anhydrase was the highest at 48 h, but the correlation between EC and carbonic anhydrase of (Chlorella vulgaris) reached it highest at 48 h. Due to the correlation between carbonic anhydrase and calcium ion, the influence of calcium ion can not be neglected when we study the relationship between carbonic anhydrase and karst dynamics in karst area.
-
Key words:
- karst microalgae /
- CO2 concentration /
- carbonic anhydrase /
- HCO3- /
- correlation analysis
-
[1] Brodersen J. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families[J]. Molecular Phylogenetics & Evolution, 1996, 5(1):50-77. [2] 李强, 何媛媛, 曹建华,等. 植物碳酸酐酶对岩溶作用的影响及其生态效应[J]. 生态环境学报, 2011, 20(12):1867-1871. [3] Bahn Y S, Mühlschlegel F A. CO2, sensing in fungi and beyond[J]. Current Opinion in Microbiology, 2006, 9(6):572-578. [4] 李强.碳酸酐酶及多肽类生物大分子与岩溶动力学理论的思考[J].中国岩溶,2010,29(3):253-257. [5] 余龙江, 吴云, 李为,等. 微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究[J]. 中国岩溶, 2004, 23(3):225-228. [6] 张小菊,杨翠珍,杨娟. 微生物碳酸酐酶在岩溶发育中的研究现状及展望[J]. 化学与生物工程,2011,28(2):9-11. [7] 聂磊, 萧洪东, 侯雨佳,等. 不同光照条件下石灰岩表面蓝藻生物岩溶侵蚀能力与生理活性研究[J]. 地学前缘, 2012, 19(6):254-259. [8] 吴雁雯, 张金池. 微生物碳酸酐酶在岩溶系统碳循环中的作用与应用研究进展[J].生物学杂志,2015,32(3):78-83. [9] Hu H J, Li Y Y, Wei Y X, et al. Chinese Freshwater Algae[M]. Shanghai: Science and Technology Press,1980:1-318. [10] Wei Y X. Chinese Freshwater Algae Records(Vol.Ⅱ)[M].Beijing: Science Press,2003: 1-84. [11] 史顺玉. 溶藻细菌对藻类的生理生态效应及作用机理研究[D].武汉:中国科学院研究生院(水生生物研究所), 2006. [12] Xia J R, Gao K S. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae[J]. Journal of Integrative Plant Biology,2005, 47(6):668-675. [13] Miller A G, Espie G S, Canvin D T. Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review[J]. Revue Canadienne De Botanique, 1990,68(6):1291-1302. [14] Badger M R, Bassett M, Comins H N. A model for HCO3 accumulation and photosynthesis in the cyanobacterium Synechococcus sp. theoretical predictions and experimental observations[J]. Plant Physiology, 1985, 77(2):465-471. [15] Kaplan A, Reinhold L. CO2 Concentrating Mechanisms In Photosynthetic Microorganisms[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1999, 50(50):539. [16] Kaplan A, Reinhold L. Nature of the Inorganic Carbon Species Actively Taken up by the Cyanobacterium Anabaena variabilis[J]. Plant Physiology, 1984, 76(3):599. [17] 沈佳. CO2和光照强度对蛋白核小球藻CO2浓缩机制(CCM)的影响[D]. 宁波:宁波大学, 2015. [18] 王山杉, 刘永定, 邹永东,等. 微囊藻碳酸酐酶活性在不同环境因素下的调节与适应[J]. 生态学报, 2006, 26(8):2443-448. [19] Fett J P, Coleman J R. Regulation of Periplasmic Carbonic Anhydrase Expression in Chlamydomonas reinhardtii by Acetate and pH[J]. Plant Physiology, 1994, 106(1):103. [20] 王培,胡清菁,曹建华,等. 念珠藻对岩溶水中Ca2+、HCO3利用效率实验研究[J]. 广西植物,2014,34(6):799-805. [21] Marcelle R D. Predicting storage quality from preharvest fruit mineral analyses.A review[J]. Acta Horticulturae, 1990,274(38):305-314. [22] Hanson J B. The functions of calcium in plant nutrition[J]. Advances in Plant Nutrition, 1984,1(1):149-208. [23] Harr M W, Distelhorst C W. Apoptosis and autophagy: decoding calcium signals that mediate life or death[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(10):a005579. [24] 徐敏. 蓝藻CCM的无机碳转运系统的理化功能研究[D].北京: 中国科学院研究生院;中国科学院大学, 2008. [25] 周红, 任久长, 蔡晓明. 沉水植物昼夜光补偿点及其测定[J]. 环境科学学报, 1997, 17(2):256-258. [26] 何媛媛. 岩溶生态系统中土壤及典型植物碳酸酐酶对岩溶作用的影响[D].桂林:广西师范大学, 2010. [27] 王培, 曹建华, 李亮,等. 不同来源小球藻对岩溶水Ca2+、HCO3利用的初步研究[J]. 水生生物学报, 2013,37(4):626-631. [28] 叶澍. 地球上最早出现的藻类:蓝藻[J]. 海洋世界, 2016,37(2):6-7. [29] 高樱红. 降水离子浓度总和与电导率的关系[J]. 化学分析计量, 2002, 11(2):62-63. [30] Walker J E, Saraste M, Runswick M J, et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold[J]. Embo Journal, 1982, 1(8):945. [31] 李为, 余龙江, 余俊峰,等. 岩溶环境因子对细菌胞外碳酸酐酶表达及活性的影响[J]. 微生物学通报, 2005, 32(5):35-39. [32] 王培. 几种水生藻类的碳汇效应研究[D].桂林:广西师范大学, 2013. [33] 李强. 水生藻类碳酸酐酶(CA)对碳酸钙沉积速率控制的试验研究[D].桂林:广西师范大学, 2004.
点击查看大图
计量
- 文章访问数: 2143
- HTML浏览量: 592
- PDF下载量: 795
- 被引次数: 0