Evaluation on utilization potential of shallow geothermal energy in major cities of Guizhou
-
摘要: 作为清洁、新型、可再生的绿色能源,浅层地热能对缓解城市节能、减排等问题有很大的帮助。为评价贵州省贵阳市、遵义市、兴义市、铜仁市、六盘水市、凯里市、都匀市、毕节市、安顺市及贵安新区10个地级市和国家级经济开发区的浅层地热能利用潜力,文章根据浅层地热能赋存环境调查、现场热响应试验及岩土体热物性测试结果等综合分析,计算出贵州主要城市地表以下100 m深度内的浅层地热能总热容量为35.20×1013kJ·℃-1,夏季换热功率为520.2×104kW,冬季换热功率为342.3×104kW;并在此基础上,评价了贵州主要城市浅层地热能的资源潜力,夏季可制冷面积为7.43×108 m2,冬季可供暖面积为6.51×108m2。Abstract: Guizhou, a province located in the southwest of China, possesses a total area of 1,414 km2 and ten major cities including Guiyang, Zunyi, Xingyi, Tongren, Liupanshui, Kaili, Duyun, Bijie, Anshun and Gui’an. Carbonate rocks and carbonate rocks intercalating clastic rocks widely extend cutover the province, which accounts for more than 90% of the total urban planning area and an ecologically vulnerable environment in each city. As a clean, new and renewable green energy, shallow geothermal energy has many advances, such as wide distribution, large reserve and can be very helpful to solve many ecologically environmental problems of the cities in Guizhou. To evaluate the utilization potential of the shallow geothermal energy, in this paper, the geothermal environment conditions was comprehensively studied; data derived from field thermal response tests and heat physical property measurements of rock and soil bodies sampled in the major cities of Guizhou were analysed. The research results show that for the most rock samples in the major cities of Guizhou, the thermal conductivity coefficient rangs from 2.0 to 4.0 W·(m·K)-1; the thermal diffusion coefficient varies from 0.5 to 3.0 mm2·s-1. The average value of the thermal conductivity of rock and soil is in the range of 2.5-3.5 W·(m·K)-1and the thermal diffusion coefficient is 1.0-1.5 mm2·s-1. By applying volumetric calculation method, the total heat-capacity at the depth of 100 m below surface is 35.20×1013kJ·℃-1,while summer and winter heat transfer powers are 520.2×104 kW and 342.3×104 kW, respectively. In terms of resource utilization potential, the shallow geothermal energy can provide for refrigeration in summer time over an area of 7.43×108 m2 and for heating in the winter over an area of 6.51×108 m2 .
-
Key words:
- shallow geothermal energy /
- utilization potential /
- evaluation /
- Guizhou
-
[1] 中华人民共和国国土资源部.浅层地热能勘察评价规范 DZ/T 02252009 [S].北京:中国标准出版社,2009. [2] 唐永香,李嫄嫄,俞衲安,等.天津滨海新区浅层地热资源评价及开发利用对策分析[J].地质找矿论丛,2014,29(4):622-627. [3] 王贵玲. 我国主要城市浅层地温能利用潜力评价[J].建筑科学,2012,28(10):1-3,8. [4] 蔺文静,吴庆华,王贵玲.我国浅层地温能潜力评价及其环境效应分析[J].干旱区资源与环境,2012,26(3):57-61. [5] 段启杉,宋小庆,孟凡涛,等.贵阳市浅层地温能赋存特征与资源评价[J].贵州地质,2015,32(3):227-232. [6] 何文君,王明章,李勇刚.岩溶地区浅层岩土体热物性参数测试及应用分析[J].贵州地质,2013,30(1):71-74,48. [7] 苏印,官冬杰,苏维词.基于SPA的喀斯特地区水安全评价:以贵州省为例[J].中国岩溶,2015,34(6):560-569. [8] 杨廷锋.西南岩溶石山地区生态承载力的演变及动力机制:以贵州省为例[J].中国岩溶,2016,35(3):332-339. [9] 王思雯,吕士辉,胡克,等.岩石特性对导热系数影响探究[J].实验技术与管理,2012,29 (5):39-41. [10] 张甫仁,彭清元,朱方圆,等.重庆主城区浅层地温能资源量评价研究[J].中国地质,2013,40(3):974-980. [11] 宋小庆,段启杉.贵阳市土壤源浅层地温能适宜性分区及资源量评价[J].长江科学院院报,2015,32(12):14-17. [12] 乔卫来,陈九法,薛琴,等.地埋管热响应测试及数据分析方法[J].流体机械,2010,38(6):60-63,65. [13] 李慧星,李国柱,陈其针,等.地源热泵地埋管换热器热响应测试分析[J].沈阳建筑大学(自然科学版),2011,27(5):931-935. [14] Katsura T, Nagano K, Takeda S, et al. Development of a design and performance prediction tool for the ground source heat pump system[J].Apply Thermal Engineering,2006, 26(10):1578-1592. [15] 陈旭,范蕊,龙惟定,等.竖直地埋管单位井深换热量影响因素回归分析[J].制冷学报,2010,31(2):11-16. [16] 郭佑雄.影响地埋管系统换热性能的三个重要参数[J].太阳能学报,2006,27(4):394-398.
点击查看大图
计量
- 文章访问数: 2148
- HTML浏览量: 557
- PDF下载量: 910
- 被引次数: 0