• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶与非岩溶区稻田土壤CO2固定细菌的丰度比较

王 腾 靳振江 郭家怡 张双双 程亚平 张 琴 李金城

王 腾, 靳振江, 郭家怡, 张双双, 程亚平, 张 琴, 李金城. 岩溶与非岩溶区稻田土壤CO2固定细菌的丰度比较[J]. 中国岩溶, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58
引用本文: 王 腾, 靳振江, 郭家怡, 张双双, 程亚平, 张 琴, 李金城. 岩溶与非岩溶区稻田土壤CO2固定细菌的丰度比较[J]. 中国岩溶, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58
WANG Teng, JIN Zhenjiang, GUO Jiayi, ZHANG Shuangshuang, CHENG Yaping, ZHANG Qin, LI JinCheng. Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area[J]. CARSOLOGICA SINICA, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58
Citation: WANG Teng, JIN Zhenjiang, GUO Jiayi, ZHANG Shuangshuang, CHENG Yaping, ZHANG Qin, LI JinCheng. Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area[J]. CARSOLOGICA SINICA, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58

岩溶与非岩溶区稻田土壤CO2固定细菌的丰度比较

doi: 10.11932/karst2017y58
基金项目: 国家自然科学基金项目(41361054,41003038);广西自然科学基金项目(2011GXNSFD018002,2011GXNSFA018006,2010GXNSFB013004; 桂科合14123001-13);岩溶动力学重点实验室开放基金项目(KDL2010-02,KDL2011-10);广西矿冶与环境科学实验中心项目资助(KH2012ZD004);广西高等学校立项科研项目(201204LX162,201106LX229);广西高等学校高水平创新团队及卓越学者计划项目(002401013001);桂林理工大学博士启动基金(2004041)

Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area

  • 摘要: 以桂林毛村岩溶试验场稻田土壤为研究对象,以cbbLR1、cbbLG1和cbbM为CO2固定细菌的指示基因,采用荧光定量PCR技术,对比三者在岩溶区、混合区与非岩溶区中的丰度。结果表明,cbbLG1基因在岩溶区的丰度显著高于混合区和非岩溶区,最大值为1.42×109拷贝·g-1;cbbLR1和cbbM基因在混合区的丰度显著高于岩溶区和非岩溶区,最大值为2.06×109拷贝·g-1和3.35×107。相关性分析表明,cbbLG1的丰度与土壤中有机碳质量分数、全氮质量分数及阳离子交换量显著相关;三个cbbL基因对pH的敏感度不同:pH与cbbL G1基因呈显著正相,而与cbbM基因呈显著负相关。

     

  • [1] 沈永平,王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土,2013,35(4):1068-1076.
    [2] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466.
    [3] 李为,余龙江,周蓬蓬,等.西南岩溶区土壤微生物生态作用的初步研究:以桂林丫吉村岩溶试验场为例[J].水土保持学报,2004,18(3):112-115.
    [4] 潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334.
    [5] Nanba K, King G M , Dunfield K.Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase[J].Applied and Environmental Microbiology, 2004, 70(4):2245-2253.
    [6] Elsaied H, Naganuma T.Phylogenetic diversity of Ribulose-1, 5-Bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms[J].Applied and Environmental Microbiology, 2001, 67(4):1751-1765.
    [7] Miltner A, Richnow H H, Kopinke F D, et al.Assimilation of CO2 by soil microorganisms and transformation into soil organic matter[J].Organic Geochemistry, 2004, 35(9):1015-1024.
    [8] Tabita F R. Molecular and cellular regulation of autotrophic carbon dioxide fixation in micro organisms[J]. Microbiology and Molecular Biology Reviews, 1988, 52 (2) :155-189.
    [9] Watson G M, Tabita F R. Microbial ribulose-1,5-bisphosphate carboxylase /oxygenase: a molecule for phylogenetic and enzymological investigations[J].Fems Microbiology Letters, 1997, 146(1):13-22.
    [10] 袁红朝,秦红灵,刘守龙,等.固碳微生物分子生态学研究[J].中国农业科学,2011,44(14):2951-2958.
    [11] Giri B J, Bano N, Hollibaugh J T.Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California[J]. Applied and environmental microbiology, 2004, 70(6): 34433448.
    [12] Alfreider A, Vogt C, Geiger-Kaiser M, et al. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes[J].Systematic and applied microbiology, 2009, 32(2):140-150.
    [13] 刘艳.深海热液区微生物的筛选鉴定及对深海环境的响应机制[D].济南:山东师范大学, 2009.
    [14] Li Qiang, Wang Hua, Jin Zhenjiang, et al.The carbon isotope fractionation in the atmosphere–soil–spring system associated with CO2 fixation bacteria at Yaji karst experimental site in Guilin, SW China[J].Environmental Earth Sciences, 2015, 74(6):5393- 5401.
    [15] 曲浩丽,肖永良,李立峰,等. 南京市大气降尘固碳微生物群落多样性研究[J].环境科技, 2016,29 (3):1-5.
    [16] 翟心心.岩溶区土壤CO2浓度和土壤酶活性的变化规律及其关系:以重庆青木关岩溶槽谷为例[D].重庆:西南大学,2011.
    [17] 鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999.
    [18] 闫颖,何红波,解宏图,等.总有机碳分析仪测定土壤中微生物量方法的改进[J].理化检验化学分册,2008,44(3):279-280.
    [19] 王伏伟,王晓波,李金才,等.秸秆还田配施化肥对砂姜黑土固碳细菌的影响[J].安徽农业大学学报,2015,42(5):818-824.
    [20] 周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [21] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [22] Ahmed A R,Pichler V,Homolak M,et al.High organic carbon stock in a karstic soil of the Middle-European Forest Province persists after centuries-long agroforestry management[J].European Journal of Forest Research,2012,131(6):1669-1680.
    [23] 张春来,黄芬,杨慧,等.岩溶生态系统中的碳循环特征与碳汇效应[J].地球与环境,2013,41(4):378-388.
    [24] 靳振江,曾鸿鹄,李强,等.起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及酶活性比较[J].环境科学,2016,37(1):335-341.
    [25] 靳振江,李强,黄静云,等.典型岩溶生态系统土壤酶活性、微生物数量、有机碳含量及其性关性:以丫吉岩溶实验场为例[J].农业环境科学学报,2013,32(2):307-313.
    [26] 李强,靳振江,李忠义,等.岩溶地貌部位对土壤微生物丰度与酶活性的影响[J].水土保持通报,2014,34(3):1-5.
    [27] Xiao K Q, Nie S A, Bao P, et al. Rhizosphere effect has no effect on marker genes related to autotrophic CO2 fixation in paddy soils?[J].Journal Soils and Sediments, 2014, 14(6):1082-1087.
    [28] Kellermann C, Selesi D, Lee N, et al.Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer[J].Fems Microbiology Ecology, 2012, 81(1):172-187.
    [29] Luo Y Q, Currie W S, Dukes J S, et al.Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J].Bioscience, 2004, 54(8):731-739.
    [30] 赵仕花,章程,夏青,等.桂林毛村岩溶区和非岩溶区土壤有机质与氮分析研究[J].广西科学院学报,2007,23(1):36-38.
    [31] Stockdale E A, Shepherd M A, Fortune S, et al.Soil fertility in organic farming systems fundamentally different?[J].Soil Use and Management, 2002, 18(S1):301-308.
    [32] Zhang L M, Hu H W, Shen J P, et al.Ammoniaoxidizing archaea have more important role than ammoniaoxidizing bacteria in ammonia oxi dation of strongly acidic soils[J].International Society for Microbial Ecology, 2012, 6(5):1032-1045.
    [33] 沈德福,李世杰,蔡德所,等.桂林岩溶湿地沉积物地球化学元素变化的环境影响因子分析[J].高校地质学报,2010,16(4):517-526.
    [34] 靳振江,潘根兴,刘晓雨,等.太湖地区长期不同施肥水稻土N2和CO2固定细菌群落结构的特征和差异[J].植物营养与肥料学报,2013,19(1):82-92.
    [35] Selesi D, Schmid M, Hartmann A.Diversity of green-like and red-like ribulose 1,5-bisphosphate carboxylase/ oxygenase large-subunit genes (cbb L) in differently managed agricultural soils [J]. Applied and Environmental Micro-biology, 2005, 171(1):175-184.
    [36] Yuan H Z,Ge T D,Chen C Y,et al.Significant role formicrobial autotrophy in the sequestration of soil carbon [J].Applied and Environmental Microbiology,2012, 78 (7):2328-2336.
    [37] 袁红朝,秦红灵,刘守龙,等.长期施肥对稻田土壤固碳功能菌群落结构和数量的影响[J].生态学报,2012,32(1):0183-0189.
    [38] Long X E, Yao H, Wang J, et al.Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils[J].Environmental Science & Technology, 2015, 49(12):7152-60.
  • 加载中
计量
  • 文章访问数:  2054
  • HTML浏览量:  622
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 发布日期:  2018-02-25

目录

    /

    返回文章
    返回